File size: 31,337 Bytes
525fbd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Now define a function, a scaler value function f(x)\n",
"def f(x):\n",
" return 3*x**2 - 4*x +5"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"20.0"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now we can just pass in some value to check\n",
"f(3.0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-5. , -4.75, -4.5 , -4.25, -4. , -3.75, -3.5 , -3.25, -3. ,\n",
" -2.75, -2.5 , -2.25, -2. , -1.75, -1.5 , -1.25, -1. , -0.75,\n",
" -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 ,\n",
" 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75,\n",
" 4. , 4.25, 4.5 , 4.75])"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# The f(x) equation as you can see is a Quadratic equation, precisely a Parabola\n",
"# So now, we try to plot it\n",
"\n",
"# Now, we'll just add like a range of values to feed in\n",
"\n",
"# We'll start with x-axis values so, from -5 to 5 (Not including 5) in the steps of 0.25\n",
"# Therefore creating a numpy array\n",
"xs = np.arange(-5,5,0.25)\n",
"xs"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([100. , 91.6875, 83.75 , 76.1875, 69. , 62.1875,\n",
" 55.75 , 49.6875, 44. , 38.6875, 33.75 , 29.1875,\n",
" 25. , 21.1875, 17.75 , 14.6875, 12. , 9.6875,\n",
" 7.75 , 6.1875, 5. , 4.1875, 3.75 , 3.6875,\n",
" 4. , 4.6875, 5.75 , 7.1875, 9. , 11.1875,\n",
" 13.75 , 16.6875, 20. , 23.6875, 27.75 , 32.1875,\n",
" 37. , 42.1875, 47.75 , 53.6875])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now for the y-axis values, we call each of those elements in the numpy array to the function f(x)\n",
"\n",
"# Therefore we create an another numpy array which containes the values after applying the function to each of the elements in xs\n",
"ys = f(xs)\n",
"ys"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2274508baf0>]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABC30lEQVR4nO3deXhU5eH28e+ZmezLhADZSELCGvZ9ExfUFFRcUESpuKEFrWBFXAptxfanNW5VXzewtipaEMWKaFUsokKRsAVB9j0QCFkgMNnINjPvH8G0UVSWSc4s9+e6zqWcmUzujFyZ2+c853kMt9vtRkRERMSLWMwOICIiIvJ9KigiIiLidVRQRERExOuooIiIiIjXUUERERERr6OCIiIiIl5HBUVERES8jgqKiIiIeB2b2QHOhMvlIj8/n6ioKAzDMDuOiIiInAK3201ZWRlJSUlYLD89RuKTBSU/P5+UlBSzY4iIiMgZyMvLIzk5+Sef45MFJSoqCqj/AaOjo01OIyIiIqeitLSUlJSUhs/xn+KTBeW7yzrR0dEqKCIiIj7mVKZnaJKsiIiIeB0VFBEREfE6KigiIiLidVRQRERExOuooIiIiIjXUUERERERr6OCIiIiIl5HBUVERES8jgqKiIiIeJ3TLijLli3jiiuuICkpCcMw+OCDDxo97na7mTFjBomJiYSFhZGZmcnOnTsbPaekpIRx48YRHR1NTEwMt99+O+Xl5Wf1g4iIiIj/OO2CUlFRQa9evXjppZdO+viTTz7J888/z6xZs1i1ahURERGMGDGCqqqqhueMGzeOzZs3s3jxYv71r3+xbNkyJk6ceOY/hYiIiPgVw+12u8/4iw2DBQsWMGrUKKB+9CQpKYn77ruP+++/HwCHw0F8fDxvvPEGY8eOZevWrXTt2pU1a9bQv39/ABYtWsRll13GgQMHSEpK+tnvW1pait1ux+FwaC8eERERH3E6n98enYOyd+9eCgoKyMzMbDhnt9sZNGgQ2dnZAGRnZxMTE9NQTgAyMzOxWCysWrXqpK9bXV1NaWlpo6MpbCso5fcLNvLRhvwmeX0RERE5NR4tKAUFBQDEx8c3Oh8fH9/wWEFBAXFxcY0et9lsxMbGNjzn+7KysrDb7Q1HSkqKJ2M3WLK1iDmr9vPGitwmeX0RERE5NT5xF8/06dNxOBwNR15eXpN8nzH9k7FZDHL2HWV7QVmTfA8RERH5eR4tKAkJCQAUFhY2Ol9YWNjwWEJCAkVFRY0er6uro6SkpOE53xcSEkJ0dHSjoynERYWS2aV+9Oft1fub5HuIiIjIz/NoQUlPTychIYElS5Y0nCstLWXVqlUMGTIEgCFDhnDs2DFycnIanvPFF1/gcrkYNGiQJ+OckV8OSgXg/XUHqKp1mpxGREQkMNlO9wvKy8vZtWtXw5/37t3L+vXriY2NJTU1lSlTpvDoo4/SsWNH0tPTeeihh0hKSmq406dLly5ccsklTJgwgVmzZlFbW8vkyZMZO3bsKd3B09TO69CKNjFhHDx2nE82HuKavslmRxIREQk4pz2CsnbtWvr06UOfPn0AmDp1Kn369GHGjBkAPPjgg9x9991MnDiRAQMGUF5ezqJFiwgNDW14jTlz5pCRkcHFF1/MZZddxrnnnstf//pXD/1IZ8diMfjlwPpJuLrMIyIiYo6zWgfFLE29DkpRaRVDHv8Cp8vN4nvPp2N8lMe/h4iISKAxbR0UfxEXHUpml/pbod9e3TR3DImIiMiPU0H5Eb8cWD9Z9p+aLCsiItLsVFB+xHkdW9MmJgzH8Vo+3XTI7DgiIiIBRQXlR1gtBmMHnJgsu0qXeURERJqTCspPGNM/BavFYHVuCbuKtLKsiIhIc1FB+QkJ9lAuytBkWRERkeamgvIzbtBkWRERkWangvIzzu/UmiR7KMcqa/ls88l3WxYRERHPUkH5GVaLwfUD6kdR5q7SyrIiIiLNQQXlFFw3IBmLAav2lrC7uNzsOCIiIn5PBeUUJNrDGibLztP+PCIiIk1OBeUUfbey7Hs5B6iu02RZERGRpqSCcoou6NSaRHsoRytr+WxzodlxRERE/JoKyimyWS1c1/+7lWV1mUdERKQpqaCchusGpGAxIHvPEfZosqyIiEiTUUE5DW1iwhjW+cRk2TVaWVZERKSpqKCcJk2WFRERaXoqKKfpws6tiY8OoaSihn9rsqyIiEiTUEE5TTarheu/myyrNVFERESahArKGbhuQAqGASt2H2Hv4Qqz44iIiPgdFZQzkNwinGGdWgMwb41GUURERDxNBeUMNUyWXXuAmjqXyWlERET8iwrKGbooI464qBCOVNSwaHOB2XFERET8igrKGbJZLYw9MYryj+x9JqcRERHxLyooZ+GGgalYLQarc0vYVlBqdhwRERG/oYJyFhLsoYzoFg/AmxpFERER8RgVlLN00+A0AD745iClVbXmhhEREfETKihnaXC7WDrFR1JZ4+SfOQfMjiMiIuIXVFDOkmEY3DS4LQBvrdyH2+02OZGIiIjvU0HxgKv7JhMZYmNPcQVf7zpidhwRERGfp4LiAZEhNq7p2waAN7NzzQ0jIiLiB1RQPOS7yzyfby3k4LHjJqcRERHxbSooHtIxPorB7WJxueHtVdqfR0RE5GyooHjQzUPSgPoNBKvrnOaGERER8WEqKB70i67xxEeHcLi8hkWbtD+PiIjImVJB8aAgq4UbBtbPRdHKsiIiImdOBcXDfjkwBZvFIGffUTbnO8yOIyIi4pNUUDwsLjqUS7onAPCWRlFERETOiApKE/husuwH6w/iqNT+PCIiIqdLBaUJDEhrQUZCFFW1Lubn5JkdR0RExOeooDQBwzC4aUj9ZNk5q/bjcml/HhERkdOhgtJERvVuQ1SIjb2HK1i+67DZcURERHyKCkoTiQixMbpfMqBbjkVERE6XCkoTuvHE/jxfbCvkwNFKk9OIiIj4DhWUJtQhLpKhHVrictfPRREREZFTo4LSxG4anAbAO2vyqKrV/jwiIiKnQgWliWV2iSPJHkpJRQ2fbDxkdhwRERGfoILSxGxWCzcMSgU0WVZERORUqaA0g+sHpBJkNVifd4yNB7Q/j4iIyM9RQWkGraNCuKxHIgBvZueaG0ZERMQHqKA0k5tPrCy7cEM+R8qrTU4jIiLi3VRQmknf1Bb0SrZTU+dirm45FhER+UkqKM3EMAxuOzcdgDdX7qOmzmVyIhEREe+lgtKMLu2eSHx0CMVl1Xy8Md/sOCIiIl5LBaUZBdss3DwkDYC/L9+L261djkVERE5GBaWZ3TAwlRCbhU0HS1mTe9TsOCIiIl5JBaWZtYgI5pq+9bscv7Z8r8lpREREvJMKigluG5oGwL+3FJBXol2ORUREvk8FxQQd46M4r2MrXG6YvSLX7DgiIiJex+MFxel08tBDD5Genk5YWBjt27fnkUceaTQh1O12M2PGDBITEwkLCyMzM5OdO3d6OopX++6W43fW5FFeXWdyGhEREe/i8YLyxBNPMHPmTF588UW2bt3KE088wZNPPskLL7zQ8Jwnn3yS559/nlmzZrFq1SoiIiIYMWIEVVVVno7jtS7o2Jr2rSMoq65j/to8s+OIiIh4FY8XlBUrVnDVVVcxcuRI0tLSuPbaaxk+fDirV68G6kdPnnvuOf7whz9w1VVX0bNnT958803y8/P54IMPPB3Ha1ksBuOH1o+ivLEiF6dLtxyLiIh8x+MF5ZxzzmHJkiXs2LEDgA0bNrB8+XIuvfRSAPbu3UtBQQGZmZkNX2O32xk0aBDZ2dknfc3q6mpKS0sbHf7gmr5tsIcFse9IJV9sKzI7joiIiNfweEGZNm0aY8eOJSMjg6CgIPr06cOUKVMYN24cAAUFBQDEx8c3+rr4+PiGx74vKysLu93ecKSkpHg6tinCg238cmAqoFuORURE/pfHC8q7777LnDlzmDt3LuvWrWP27Nk8/fTTzJ49+4xfc/r06TgcjoYjL89/5mzcPKQtVotB9p4jbMn3j5EhERGRs+XxgvLAAw80jKL06NGDm266iXvvvZesrCwAEhISACgsLGz0dYWFhQ2PfV9ISAjR0dGNDn+RFBPGZT0SAXjta42iiIiIQBMUlMrKSiyWxi9rtVpxuep3701PTychIYElS5Y0PF5aWsqqVasYMmSIp+P4hO8WbvtwfT7FZdXmhhEREfECHi8oV1xxBX/+85/5+OOPyc3NZcGCBTzzzDNcffXVABiGwZQpU3j00Uf58MMP2bhxIzfffDNJSUmMGjXK03F8Qp/UFvRJjaHG6WLOqn1mxxERETGdzdMv+MILL/DQQw9x1113UVRURFJSEnfccQczZsxoeM6DDz5IRUUFEydO5NixY5x77rksWrSI0NBQT8fxGbcNTefu/d/wj5X7+PWw9oTYrGZHEhERMY3h/t8lXn1EaWkpdrsdh8PhN/NR6pwuzn/yS/IdVTw9phfX9ks2O5KIiIhHnc7nt/bi8RI2q4Wbz0kD4O/L9+KDvVFERMRjVFC8yNgBKYQFWdl6qJSVe0rMjiMiImIaFRQvEhMezOh+bQDdciwiIoFNBcXLfLc/z+dbC9l3pMLkNCIiIuZQQfEy7VtHcmHn1rjd9ZsIioiIBCIVFC9027n1oyjz1x6grKrW5DQiIiLNTwXFC53boRWd4iMpr67j7dX7zY4jIiLS7FRQvJBhGPzq3HYAvLY8l5o6l8mJREREmpcKipe6qk8ScVEhFJRW8eGGfLPjiIiINCsVFC8VYrM2zEX567LduFxauE1ERAKHCooXu2FQKpEhNnYUlvPVjiKz44iIiDQbFRQvFh0axLhBqQDMWrrH5DQiIiLNRwXFy40fmk6Q1WD13hLW7T9qdhwREZFmoYLi5RLsoYzqXb/8/V81iiIiIgFCBcUH3HFB/S3Hn20pYE9xuclpREREmp4Kig/oEBdFZpd43G549T/aRFBERPyfCoqPuPPEKMo/1x2gqKzK5DQiIiJNSwXFR/RPi6Vf2xbU1LmYrU0ERUTEz6mg+JA7zq8fRXkrex/l1XUmpxEREWk6Kig+JLNLPO1aR1BaVcc8bSIoIiJ+TAXFh1gsRsMoyt+X79UmgiIi4rdUUHzMqD5taB0VwiFHFR9pE0EREfFTKig+JsRm5bah9ZsIvrJsN263NhEUERH/o4LigxptIri92Ow4IiIiHqeC4oPsYUHc0LCJ4G6T04iIiHieCoqPGj80jSCrwaq9JXyjTQRFRMTPqKD4qER7GFd9t4ngMm0iKCIi/kUFxYdNPHHL8aLNBew9XGFyGhEREc9RQfFhneKjuDgj7sQmghpFERER/6GC4uPuuKA9AO/lHKC4rNrkNCIiIp6hguLjBqS1oE9qjDYRFBERv6KC4uMMw+CO8+tHUd7MzqW0qtbkRCIiImdPBcUPDO8aT4e4SEqr6ngre5/ZcURERM6aCoofsFgMJl1YP4ry9+V7qaypMzmRiIjI2VFB8RNX9EyibctwSipqmLtqv9lxREREzooKip+wWS3cNax+FOWVZXuoqnWanEhEROTMqaD4kav7JNMmJozismreXZtndhwREZEzpoLiR4JtFu68oH512Vlf7aamzmVyIhERkTOjguJnxvRPIS4qhHxHFe+vO2B2HBERkTOiguJnQoOsDXv0vPzVbuqcGkURERHfo4Lih24YlErLiGD2l1Ty4YZ8s+OIiIicNhUUPxQebOP289IBePHLXThdbpMTiYiInB4VFD910+C22MOC2FNcwaebDpkdR0RE5LSooPipqNAgxg9NA+DFL3bh0iiKiIj4EBUUPzb+nHQiQ2xsKyjj862FZscRERE5ZSoofsweHsTNQ9oC8MIXu3C7NYoiIiK+QQXFz91+bjphQVY2HnTw1Y5is+OIiIicEhUUP9cyMoRxg1IBeGHJTo2iiIiIT1BBCQATz29HsM3Cuv3HyN59xOw4IiIiP0sFJQDERYcydkAKUD8XRURExNupoASIOy5oT5DVIHvPEdbmlpgdR0RE5CepoASINjFhjO6bDGgURUREvJ8KSgC5a1gHrBaDpTuK2ZB3zOw4IiIiP0oFJYCktgznql5JQP0ePSIiIt5KBSXA3HVhBwwDFm8pZEt+qdlxRERETkoFJcB0iIvksh6JADy/ZKfJaURERE5OBSUATbm4I4YBizYXsPGAw+w4IiIiP6CCEoA6xkcxqncbAJ5ZvN3kNCIiIj+kghKg7rm4I1aLwZfbi8nZd9TsOCIiIo00SUE5ePAgN954Iy1btiQsLIwePXqwdu3ahsfdbjczZswgMTGRsLAwMjMz2blT8yGaU1qrCK49sS6KRlFERMTbeLygHD16lKFDhxIUFMSnn37Kli1b+Mtf/kKLFi0anvPkk0/y/PPPM2vWLFatWkVERAQjRoygqqrK03HkJ9x9cQeCrAZf7zrCit2HzY4jIiLSwHB7eHvbadOm8fXXX/Of//znpI+73W6SkpK47777uP/++wFwOBzEx8fzxhtvMHbs2J/9HqWlpdjtdhwOB9HR0Z6MH3BmLNzEm9n76N+2BfPvHIJhGGZHEhERP3U6n98eH0H58MMP6d+/P2PGjCEuLo4+ffrw6quvNjy+d+9eCgoKyMzMbDhnt9sZNGgQ2dnZJ33N6upqSktLGx3iGZMu7ECIzcLafUdZuqPY7DgiIiJAExSUPXv2MHPmTDp27Mhnn33Gr3/9a37zm98we/ZsAAoKCgCIj49v9HXx8fENj31fVlYWdru94UhJSfF07IAVHx3KTYPbAvDM4h14eEBNRETkjHi8oLhcLvr27ctjjz1Gnz59mDhxIhMmTGDWrFln/JrTp0/H4XA0HHl5eR5MLHcOa094sJVvDzhYvKXQ7DgiIiKeLyiJiYl07dq10bkuXbqwf/9+ABISEgAoLGz8QVhYWNjw2PeFhIQQHR3d6BDPaRUZwvihaUD9KIrLpVEUERExl8cLytChQ9m+vfFtqzt27KBt2/rLCOnp6SQkJLBkyZKGx0tLS1m1ahVDhgzxdBw5RRPPa09UqI1tBWV8vPGQ2XFERCTAebyg3HvvvaxcuZLHHnuMXbt2MXfuXP76178yadIkAAzDYMqUKTz66KN8+OGHbNy4kZtvvpmkpCRGjRrl6ThyiuzhQUw4rx0Az36+gzqny+REIiISyDxeUAYMGMCCBQt4++236d69O4888gjPPfcc48aNa3jOgw8+yN13383EiRMZMGAA5eXlLFq0iNDQUE/HkdMwfmgaMeFB7Cmu4IP1+WbHERGRAObxdVCag9ZBaTqzlu7m8U+3kRIbxhf3DSPIqt0QRETEM0xdB0V8281D2tIqMoS8kuPMX3vA7DgiIhKgVFCkkfBgG5MubA/AC1/spKrWaXIiEREJRCoo8gO/HJhKoj2UQ44q3l693+w4IiISgFRQ5AdCg6xMvqgDAC99uZvjNRpFERGR5qWCIic1pl8KKbFhHC6v5s3sXLPjiIhIgFFBkZMKtlm45+JOQP2dPWVVtSYnEhGRQKKCIj9qVO8k2rWO4GhlLa9/nWt2HBERCSAqKPKjbFYL92bWj6K8umwPRytqTE4kIiKBQgVFftLIHol0SYymrLqOF7/cZXYcEREJECoo8pMsFoPpl2YA8GZ2LnkllSYnEhGRQKCCIj/r/E6tOa9jK2qdbp7+9/af/wIREZGzpIIip+S3l2RgGLBwfT4bDzjMjiMiIn5OBUVOSfc2dq7u3QaAxz7Zig/uMSkiIj5EBUVO2dThnQi2Wcjec4SvdhSbHUdERJqA2+1mV1GZ2TFUUOTUJbcIZ/w5aQA8/sk2nC6NooiI+Jt/fXuIXzy7jIcXbjI1hwqKnJa7hnXAHhbE9sIy/rnugNlxRETEg6pqnTyxaBtuN8RGhJiaRQVFTos9PIjJF9ZvJPjMv3doI0ERET8ye0UuB44eJz46hAnnp5uaRQVFTttNQ9rSJiaMgtIqXvt6r9lxRETEA0oqahoW5Lx/eGfCg22m5lFBkdMWGmTlgRGdAZj51W6OlFebnEhERM7W//t8B2VVdXRNjGZ032Sz46igyJm5slcS3ZKiKa+u44UvtAS+iIgv211czpxV+wH4w8guWCyGyYlUUOQMWSwGv7usCwD/WLmP3MMVJicSEZEzlfXJNupcbi7OiOOcDq3MjgOooMhZGNqhFRd0ak2dy81TWgJfRMQnZe8+wudbC7FaDKaf+B9Pb6CCImdl2qX1S+B//O0hvtl/1Ow4IiJyGlwuN3/+ZAsANwxMpUNcpMmJ/ksFRc5Kl/+ZTJX16TYtgS8i4kMWfHOQTQdLiQyxMSWzo9lxGlFBkbM29RedCLFZWL23hC+2FZkdR0RETsHxGmfDDvV3XdielpHmLsz2fSooctaSYsK47dz6BX0e/3QbdU6XyYlEROTn/H35Hg45qmgTE8ZtQ81dlO1kVFDEI349rD0twoPYWVTOezlaAl9ExJsVlVUx86vdADx4SWdCg6wmJ/ohFRTxiOjQIO6+qP765TOLd1BZU2dyIhER+THPLt5JRY2TXsl2ruiZZHack1JBEY+5cXBbUmPDKSqr5tVlWgJfRMQbbS8o4501JxZlu7yrVyzKdjIqKOIxwTYLD15yYgn8pbvIP3bc5EQiIvJ9j32yFZcbLumWwIC0WLPj/CgVFPGokT0SGZgWS1Wti6xPt5kdR0RE/seyHcUs3VFMkNVg2qUZZsf5SSoo4lGGYfDwlV2xGPDRhnxW7y0xO5KIiABOl5vHPtkKwE2D00hrFWFyop+mgiIe1y3JztiBqQD88cPNOF1avE1ExGzz1+axraAMe1gQv7m4g9lxfpYKijSJ+4d3JjrUxpZDpcw7MRlLRETMUVFdx18W7wDg7os6EBMebHKin6eCIk0iNiKYe3/RCYCnP9uOo7LW5EQiIoHrlWV7KC6rJjU2nJuGtDU7zilRQZEmc+PgtnSMi+RoZS3Pfr7D7DgiIgHp4LHj/HVZ/aJs0y7NIMTmfYuynYwKijSZIKuFh6/oBsBbK/exo7DM5EQiIoHnzx9voarWxcC0WC7tnmB2nFOmgiJN6tyOrRjRLR6ny83/fbRFux2LiDSj5TsP88nGAqwWgz9d1Q3D8M5F2U5GBUWa3B9GdiXYZmH5rsP8e0uh2XFERAJCTZ2Lhz/cBMBNg9vSJTHa5ESnRwVFmlxKbDgTz2sHwKMfb6Gq1mlyIhER//f613vZXVxBq8j/3rTgS1RQpFncdWF7EqJDySs5zt/+s8fsOCIifq3AUcXzS3YC8NtLMrCHBZmc6PSpoEizCA+2Mf2y+mWVX/pyN4cc2qdHRKSpPPbJVipqnPRJjWF032Sz45wRFRRpNlf2SmJAWguO1zp5XPv0iIg0iZV7jvDhhnwMAx65qrvX7lb8c1RQpNkYhsHDV3TDMGDh+nzW5mqfHhERT6p1unh44WYAbhiYSvc2dpMTnTkVFGlW3dvYGTsgBYA/fqR9ekREPOmt7H1sLyyjRXgQD4zobHacs6KCIs3u/uGdiQq1selgKe+uzTM7joiIXygqq+LZE/vtPDAiwyf22/kpKijS7FpGhnBvZv0tb099th3Hce3TIyJytp74dDtl1XX0TLZz/YmRal+mgiKmuGlI/T49JRU1/L/Pd5odR0TEp+XsK+Gf6w4A8Kcru2H10Ymx/0sFRUwRZLUw44quALyZncv2Au3TIyJyJpwuNzNOTIy9vn8KfVJbmJzIM1RQxDTndWzNiG7x1Lnc/G7BRlyaMCsictrmrt7P5vxSokNtPHiJb0+M/V8qKGKqP17ZjYhgKzn7jvKOJsyKiJyWkooanv5sOwD3j+hMy8gQkxN5jgqKmCrRHsZ9w+sbf9YnWykuqzY5kYiI73jqs204jtfSJTGaGwammh3Ho1RQxHS3nJNGjzZ2SqvqePTjLWbHERHxCRvyjjFvTf3I8yNXdcNm9a+PdP/6acQnWS0Gj13dA8uJFWaX7Sg2O5KIiFdzudzMWLgJtxuu6dOG/mmxZkfyOBUU8Qo9ku3cck4aAA8t3ERVrdPcQCIiXuydtXlsOOAgMsTGtBMbsfobFRTxGvcN70xCdCj7jlTy4he7zI4jIuKVisqqyPpkKwBTMjsSFxVqcqKmoYIiXiMyxMYfr+wGwCvLdrOjUGujiIh8358+3EJpVR092ti59cTIsz9SQRGvMqJbPJld4ql1uvm91kYREWlk8ZZCPt54CKvFIOuaHn43MfZ/+e9PJj7JMAz+dFU3woOtrMk9yvwcrY0iIgJQVlXLQx9sAuBX56XTvY3d5ERNq8kLyuOPP45hGEyZMqXhXFVVFZMmTaJly5ZERkYyevRoCgsLmzqK+Ig2MWFM/UX9ZoKPfbKNw+VaG0VE5KnPtlNQWkXbluFMubiT2XGaXJMWlDVr1vDKK6/Qs2fPRufvvfdePvroI+bPn8/SpUvJz8/nmmuuacoo4mNuPSeNronROI7X8uePt5odR0TEVDn7Snhr5T4Asq7uQViw1eRETa/JCkp5eTnjxo3j1VdfpUWL/25c5HA4+Pvf/84zzzzDRRddRL9+/Xj99ddZsWIFK1eubKo44mNsVgtZ1/TAMGDBNwdZvvOw2ZFERExRXefkt//ciNsNY/olc06HVmZHahZNVlAmTZrEyJEjyczMbHQ+JyeH2traRuczMjJITU0lOzv7pK9VXV1NaWlpo0P8X6+UGG4e3BaAP3ywUWujiEhAmvnVbnYVldMqMpjfj+xidpxm0yQFZd68eaxbt46srKwfPFZQUEBwcDAxMTGNzsfHx1NQUHDS18vKysJutzccKSkpTRFbvNB9IzoTHx1C7pFKXv5Sa6OISGDZWVjGSyd+9z18RTdiwoNNTtR8PF5Q8vLyuOeee5gzZw6hoZ5ZPGb69Ok4HI6GIy9Pd3YEiujQIP54Rf3aKDOX7mZXkdZGEZHA4HK5mfb+Rmqdbi7OiOPynolmR2pWHi8oOTk5FBUV0bdvX2w2GzabjaVLl/L8889js9mIj4+npqaGY8eONfq6wsJCEhISTvqaISEhREdHNzokcFzSPYGLM+Kodbr53YJNuN1aG0VE/N+c1fvJ2XeUiGArj4zqjmEYZkdqVh4vKBdffDEbN25k/fr1DUf//v0ZN25cw78HBQWxZMmShq/Zvn07+/fvZ8iQIZ6OI37gu7VRwoKsrN5bwvy1B8yOJCLSpA45jvPEp9sAePCSDJJiwkxO1Pxsnn7BqKgounfv3uhcREQELVu2bDh/++23M3XqVGJjY4mOjubuu+9myJAhDB482NNxxE8ktwjn3l905LFPtvHox1s4v1NrEuz+uf+EiAQ2t9vNQx9spry6jj6pMdx44maBQGPKSrLPPvssl19+OaNHj+b8888nISGB999/34wo4kNuG5pOr2Q7pVV1TH//W13qERG/9OmmAj7fWkiQ1eCJ0T2xWgLr0s53DLcP/pYvLS3FbrfjcDg0HyXA7CwsY+Tzy6lxunjy2p5c1193dImI/3BU1pL57FKKy6r5zUUdmDq8s9mRPOp0Pr+1F4/4lI7xUUwdXr/E8yMfbSH/2HGTE4mIeE7Wp1spLqumfesIJl3Uwew4plJBEZ8z4bx29EmNoay6jmnvb9SlHhHxC9m7jzBvTf0yGo+P7kmIzf+Xs/8pKijic6wWg6fH9CLEZmHZjmLeWaN1cUTEt1XVOvndgo0AjBuUyoC0WJMTmU8FRXxS+9aRPDCi/trsox9v5cDRSpMTiYicuScWbWPv4Qrio0P47aUZZsfxCioo4rPGD02nf9sWlFfX8dt/6q4eEfFNK3Yd5vWvcwF4YnRPokODzA3kJVRQxGdZLQZPXtuT0CALX+86wpxV+82OJCJyWhzHa7l//gag/tLOsM5xJifyHioo4tPatY7kwRH1w6GPfbKVvBJd6hER3/GnjzaT76iibctwfndZ4OxUfCpUUMTn3XpOGgPTYqmscfLge9/iculSj4h4v0WbDvH+uoNYDHjmul5EhHh8cXefpoIiPs9iMXhqTE/Cgqxk7znCP1btMzuSiMhPKiqr4ncLNgFw5wXt6ddWd+18nwqK+IW2LSOYfln9pZ6sT7ax70iFyYlERE7O7Xbzu/c3UlJRQ5fEaKZkdjI7kldSQRG/ceOgtgxp15LjtU4e0KUeEfFS89ce4POtRQRbLTx7fS+CbfooPhm9K+I3LCfu6gkPtrJ6bwmzs3PNjiQi0kheSSV/+mgzAPcN70RGgvaT+zEqKOJXUmL/OxP+u4WPRES8gdPl5r53N1BR42RAWgt+dV47syN5NRUU8TvjBqVybodWVNW6eGD+Bpy61CMiXuC15XtZnVtCeLCVv4zpjdVimB3Jq6mgiN8xDIPHR/cgMsTG2n1HmbV0t9mRRCTAbS8o46nPtgPw0OVdSW0ZbnIi76eCIn4puUU4D1/RFYBnFu9g3f6jJicSkUBVU+fi3nfWU+N0cVFGHGMHpJgdySeooIjfurZfMlf2SsLpcvObt7+htKrW7EgiEoCeX7KTLYdKaREexOOje2AYurRzKlRQxG8ZhsGjV3cnJTaMA0eP87v3N2pDQRFpVjn7jvLyV7sA+PPVPYiLCjU5ke9QQRG/Fh0axPNj+2CzGPzr20PMzzlgdiQRCRCVNXXc9+56XG64uk8bLuuRaHYkn6KCIn6vT2oLpg6vX6nx4YWb2V1cbnIiEQkEj368ldwjlSREh/LHK7uZHcfnqKBIQLjz/PYM7VC/yuzdc7+hus5pdiQR8WP/+jafuav2A/D0mF7Yw4JMTuR7VFAkIFgsBs9c15vYiGC2HCrliU+3mx1JRPxU7uEKpv1zIwB3DWvPuR1bmZzIN6mgSMCIjw7l6TE9AXjt6718sa3Q5EQi4m+q65xMfnsd5dV1DEhrwdRfaCPAM6WCIgHloox4bj0nDYD7539LUWmVuYFExK889vFWNh2sv6X4+V/2wWbVx+yZ0jsnAWfapRl0SYympKKGe99dr12PRcQjPt14iNnZ+wB45rreJNrDTE7k21RQJOCEBll54Zd9CAuy8vWuI7yybI/ZkUTEx+0/UsmD730LwB0XtOPCjDiTE/k+FRQJSB3iIvnjlfVL4f/l39v5Rkvhi8gZ+m7eSVl1Hf3atuD+4Z3NjuQXVFAkYF3XP4WRPROpc7n5zTwthS8iZ+bxT7fx7QEH9rD6eSdBmnfiEXoXJWAZhsFjV/egTUwYeSXH+cOCTVoKX0ROy2ebC3j961wA/jKmF21iNO/EU1RQJKDV/x9Pb6wWgw835POelsIXkVOUV1LJA/M3ADDhvHQyu8abnMi/qKBIwOvXNpZ7MzsC8NDCTWw9VGpyIhHxdjV1Lu5++xtKq+ronRLDg5dkmB3J76igiAC/HtaB8zq2oqrWxR1v5XCsssbsSCLixZ5ctI31eceIDrXx4g2ad9IU9I6KAFaLwfNj+5DcIoz9JZXcM289Tq2PIiIn8fmWQv62fC9Qv89OcotwkxP5JxUUkRNaRATzyk39CLFZWLqjmOc+32F2JBHxMgePHee+E/NObhuazvBuCSYn8l8qKCL/o1uSncdH9wDghS928dnmApMTiYi3qHW6uHvuOhzHa+mVbGfapZp30pRUUES+5+o+yQ379dz37gZ2F5ebG0hEvMIj/9rCuv3HiAq18eINfQm26SO0KendFTmJ34/swsC0WMqr67jjrRzKq+vMjiQiJnp79X7ezN6HYcCz1/UmJVbzTpqaCorISQRZLbw4rg/x0SHsKirn/nc3aBE3kQC1JreEGQs3AXDfLzppvZNmooIi8iPiokKZeWM/gqwGizYXMHPpbrMjiUgzO3jsOHe+lUOt083InolMurCD2ZEChgqKyE/om9qCP17ZDYCnP9vOsh3FJicSkeZyvMbJxDfXcqSihq6J0Tx1bU8MwzA7VsBQQRH5GTcMTOX6/im43PCbed+QV1JpdiQRaWJut5sH3tvA5vxSWkYE8+ot/QkPtpkdK6CooIj8DMMw+NNV3eiVbOdYZS13vJXD8Rqn2bFEpAm9/NVu/vXtIWwWg5k39tMmgCZQQRE5BaFBVmbe2I+WEcFsOVTK7xds1KRZET/1+ZZCnv73dgD+dFU3BqbHmpwoMKmgiJyipJgwXrihD1aLwfvfHGT2ilyzI4mIh+0sLGPKO+txu+HGwamMG9TW7EgBSwVF5DSc074V00+sHvnox1vJ3n3E5EQi4imOylomvLmW8uo6BqXH8vAV3cyOFNBUUERO0+3npnNlryTqXG7ueGstu4rKzI4kImepzuli8tvryD1SSZuYMF4e11c7FJtM777IaTIMgyev7Unf1BhKq+q49fU1FJdVmx1LRM7C459u4z87DxMWZOXVm/vTMjLE7EgBTwVF5AyEnvgl1rZlOAeOHudXs9dQWaPl8EV80T9zDvC35XsB+Mt1veiaFG1yIgEVFJEz1jIyhDfGD6RFeBAbDjj4zdvrcbp0Z4+IL/lm/1GmL9gIwG8u6sBlPRJNTiTfUUEROQvprSJ49eb+BNssfL61kEf+tcXsSCJyivYfqWTCmznU1LkY3jWeKZmdzI4k/0MFReQs9U+L5ZnregHwxopc/n5iqFhEvNfh8mpufm0Vh8ur6ZIYzTPX98Zi0TL23kQFRcQDLu+ZxLSG24+3sGhTgcmJROTHVFTXcfsba8g9UklyizBmjx9AZIiWsfc2KigiHnLH+e0YNygVtxvumfcN3+w/anYkEfmeWqeLX89Zx4YDDmIjgnnztoHERYeaHUtOQgVFxEMMw+BPV3bjws6tqa5z8avZa9l/RBsLingLt9vNb9/7lmU7igkLsvL3W/rTrnWk2bHkR6igiHiQzWrhxRv60i0pmiMVNdz6xmqOVdaYHUtEgCcWbef9bw5itRi8PK4vfVJbmB1JfoIKioiHRYTYeO3WASTZQ9lTXMHEN3OortPuxyJmem35XmYt3Q3A49f04MKMOJMTyc9RQRFpAvHRobw+fiBRITZW55bwwPxvcWmNFBFTfLQhn0c+rl8C4IERnRnTP8XkRHIqVFBEmkjnhChm3tgPm8Xgww35PHVi+3YRaT4rdh3mvnc34HbDLUPactew9mZHklPk8YKSlZXFgAEDiIqKIi4ujlGjRrF9e+NfzFVVVUyaNImWLVsSGRnJ6NGjKSws9HQUEdOd27EVWdf0AGDmV7uZ+dVukxOJBI7N+Q4mvpVDjdPFZT0SmHFFNwxDa534Co8XlKVLlzJp0iRWrlzJ4sWLqa2tZfjw4VRUVDQ859577+Wjjz5i/vz5LF26lPz8fK655hpPRxHxCmP6p/DgJZ0BeGLRNl7TQm4iTS6vpJJbX19DeXUdg9Jjeea63li1EJtPMdxud5NeGC8uLiYuLo6lS5dy/vnn43A4aN26NXPnzuXaa68FYNu2bXTp0oXs7GwGDx78s69ZWlqK3W7H4XAQHa1NncQ3PPPv7Tz/xS4AHru6BzcMSjU5kYh/OlJezZhZ2ew5XEFGQhTv3jmE6NAgs2MJp/f53eRzUBwOBwCxsbEA5OTkUFtbS2ZmZsNzMjIySE1NJTs7u6njiJjm3l90YuL57QD4/QcbeX/dAZMTififypo6bpu9lj2HK2gTE8bs2waqnPioJl3b1+VyMWXKFIYOHUr37t0BKCgoIDg4mJiYmEbPjY+Pp6Dg5MuDV1dXU11d3fDn0tLSJsss0lQMw2D6pRlU1zqZnb2P++dvINhm4fKeSWZHE/ELlTV1jH99DRvyjhETHsTs2wYSr1VifVaTjqBMmjSJTZs2MW/evLN6naysLOx2e8ORkqJbxMQ3GYbBw1d0Y+yAFFxumDJvPf/erH17RM7Wd+Vk1d4SokJsvH7rADrEaZVYX9ZkBWXy5Mn861//4ssvvyQ5ObnhfEJCAjU1NRw7dqzR8wsLC0lISDjpa02fPh2Hw9Fw5OXlNVVskSZnsRj8+eoejOqdRJ3LzeS537B0R7HZsUR81vfLyezbB2qVWD/g8YLidruZPHkyCxYs4IsvviA9Pb3R4/369SMoKIglS5Y0nNu+fTv79+9nyJAhJ33NkJAQoqOjGx0ivsxqMXh6TC8u7Z5AjdPFxDfXkr37iNmxRHzOycpJX5UTv+DxgjJp0iT+8Y9/MHfuXKKioigoKKCgoIDjx48DYLfbuf3225k6dSpffvklOTk5jB8/niFDhpzSHTwi/sJmtfD/xvbh4ow4qutc3D57DTn7SsyOJeIzVE78m8dvM/6xRXBef/11br31VqB+obb77ruPt99+m+rqakaMGMHLL7/8o5d4vk+3GYs/qap1MuHNtfxn52GiQmzMmTCInskxZscS8WoqJ77pdD6/m3wdlKaggiL+5niNk1teX83qvSXYw4KYN3EwXRL1d1vkZFROfJdXrYMiIj8vLNjKa7cOoHdKDI7jtdz4t1XsLCwzO5aI11E5CRwqKCJeIjLExuzbBtItKZojFTVc90o26/OOmR1LxGuonAQWFRQRL2IPC+Iftw+iV0oMRytrueHVlXy967DZsURMp3ISeFRQRLxMi4hg5vxqEEM7tKSyxsn419ewaNMhs2OJmEblJDCpoIh4ocgQG6/dOqBhnZS75qxj3ur9ZscSaXaO47Xc+prKSSBSQRHxUiE2Ky/e0LdhWfxp729k1tLdZscSaTb5x44zZtYKVueqnAQiFRQRL2a1GGRd04M7L2gPwOOfbiPrk6344OoAIqdlW0Ep17y8gh2F5cRHh/DOHUNUTgKMCoqIlzMMg2mXZjD90gwAXlm2h2n/3Eid02VyMpGmsWLXYcbMzKagtIqOcZG8f9dQuiZpXaBAo4Ii4iPuuKA9T47uicWAd9bmMXnuN1TVOs2OJeJRC9cf5JbXV1NWXcfA9Fjeu/Mc2sSEmR1LTKCCIuJDrhuQwsvj+hFstbBocwG3vbGG8uo6s2OJnDW3280rS3dzz7z11DrdjOyZyJu3DcQeHmR2NDGJCoqIj7mkewJv3DaAiGArK3Yf4YZXV1JSUWN2LJEz5nS5+dNHW8j6dBsAt5+bzgtj+xAaZDU5mZhJBUXEB53TvhVvTxxMbEQw3x5wcO2sFew9XGF2LJHTVlXrZNKcdbyxIheAP4zswkOXd8ViOfnGsxI4VFBEfFTP5BjevWMISfZQ9hRXcNWLy1m6o9jsWCKn7GhFDTf+bRWLNhcQbLXw4g19+NV57cyOJV5CBUXEh3WIi+SDyUPp17YFpVV1jH99Na8s3a3bkMXr5ZVUMnrWCtbuO0p0qI03bx/I5T2TzI4lXkQFRcTHxUWFMnfCIK7vX7+gW9an25jyznrd4SNea0PeMa6ZuYI9xRUk2UN579fnMLhdS7NjiZdRQRHxAyE2K4+P7sH/XdUNm8Vg4fp8rp21goPHjpsdTaSB2+1mzqp9jJmVTXFZNRkJUbx/11A6xUeZHU28kAqKiJ8wDIObh6Tx1u2DiI0IZtPBUq56cTlrckvMjibC8Ron983fwO8XbKLG6WJ413jevXMICfZQs6OJl1JBEfEzQ9q35MPJQ+mSGM3h8hpueHUlc1btMzuWBLC9hyu4+uWveX/dQawWg+mXZvDKTf2IDtUaJ/LjVFBE/FByi3D++eshjOyZSK3Tze8XbOL3CzZSU6fl8aV5fba5gCtfWM62gjJaRYYw51eDuOOC9hiGbiOWn6aCIuKnwoNtvPjLPjwwojOGAXNW7Wfc31ZSXFZtdjQJAHVOF1mfbuWOt3Ioq65jQFoLPvnNuZoMK6dMBUXEjxmGwaQLO/D3W/oTFWJjTe5RrnxxOevzjpkdTfxYUVkV4/62ileW7gFgwnnpzJ0wmLhozTeRU6eCIhIALsqIZ8GkobRrFcEhRxWjZ67g/32+Uzsii8etyS3h8ueXs2pvCZEhNl4e15ffj+xKkFUfN3J69DdGJEB0iItkwaShjOyZiNPl5tnPdzDmlWxytUS+eIDb7eZv/9nD2L+upKismk7xkSycPJTLeiSaHU18lAqKSACxhwXx4i/78Nz1vYkKtfHN/mNc9vx/eHv1fq0+K2espKKGX/9jHY9+vBWny81VvZP4YNJQ2reONDua+DDD7YO/lUpLS7Hb7TgcDqKjo82OI+KTDh47zn3vrmflnvp1UjK7xJF1TU9aR4WYnEx8ycffHmLGwk0cqaghyGow4/Ku3Di4re7SkZM6nc9vFRSRAOZyufn78r089dl2apwuWkYE8/jonvyia7zZ0cTLFZdVM2PhJj7dVABA5/gonh7Tix7JdpOTiTdTQRGR07L1UCn3vrOebQVlAIwdkMJDl3clIsRmcjLxNm63m4Xr8/njR5s5VlmLzWJw14UdmHxhB4JtmjUgP00FRUROW1Wtk2cW7+DV/+zB7Ya2LcN55rre9Gvbwuxo4iWKSqv43YJNfL61EICuidE8NaYn3ZI0aiKnRgVFRM5Y9u4j3PfuevIdVVgMuGtYByZf1IHQIKvZ0cQkbrebf647yP99tJnSqjqCrAa/uagjdw5rr9uH5bSooIjIWXEcr+WPH25mwTcHAUiJDeMPI7syvGu8Jj8GmEOO40x/fyNfbS8GoGeynaeu7UXnBO1ALKdPBUVEPOKTjYf4v4+2UFBaBcC5HVrx8BVd6RivDyd/53a7mbcmj8c+3kpZdR3BNgv3ZnZiwnnp2DRqImdIBUVEPKaiuo6ZX+3mr8v2UON0YbUY3DIkjXsyO2IP0260/ihnXwmPfbKNnH1HAeiTGsNT1/akQ5yKqZwdFRQR8bh9Ryp49OOtLN5SP0GyZUQwD4zozJj+KVgtuuzjD/YUl/Pkou0s2lx/63BokIX7h3dm/NB0/TcWj1BBEZEms2xHMX/6aDO7i+uXyO/Rxs4fr+xKv7axJieTM1VcVs3zS3Yyd/V+nC43FgOu65/Cvb/oRLw2+BMPUkERkSZV63TxZvY+nlu8g7LqOgCu7tOGaZdm6APNh1TW1PG3/+zllaW7qahxAnBxRhy/vTSDTppnJE1ABUVEmsXh8mqeWrSdd3PycLshPNjKhPPaces5abSICDY7nvyIOqeL+TkHeHbxDorKqgHolWxn+mVdGNyupcnpxJ+poIhIs/r2wDH++OFm1u0/BtQXlV8OTOVX56WTaA8zN5w0cLvdLNlaxOOLtrGrqByA1NhwHrykMyN7JOoWcmlyKigi0uzcbjefbCzgpS93seVQKQBBVoNr+iRzxwXtaKedbU3jdLn5YlsRry7bw+rc+s0hW4QHcfdFHRk3OJUQmxbhk+ahgiIipnG73SzdUczMr3azam/9h6FhwKXdE/j1BR20mVwzKquq5d21B5i9Ipf9JZUAhNgs3HZuOnde0F63iUuzU0EREa+Qs+8oM7/axedbixrOndexFb8e1p4h7VrqkkIT2Xu4gtkrcpm/Nq9h8mt0qI1fDkzl1qFpuuwmplFBERGvsq2glFeW7uHDDfk4XfW/cnqnxHDnBe3J7BKnlUk9wO12s3zXYV7/Opcvtxfx3W/2DnGR3HpOGtf0bUN4sHanFnOpoIiIV8orqeSvy/bw7to8qutcQP2Cb1f0SmJUnzb0SrZrVOU0Ha9x8v43B3jj61x2npj4CnBh59aMH5rOeR1b6T0Vr6GCIiJerbismte/3ss7a/I4UlHTcD69VQRX9U5iVO82pLWKMDGhd6tzulidW8KiTQUsXJ+P43gtABHBVq7tl8wt56RpUrJ4JRUUEfEJtU4Xy3cd5oNvDvLZ5gKqal0Nj/VJjWFU7zZc3jORlpEhJqb0DtV1Tr7edZhFmwpYvKWQo5W1DY+lxIZxy5A0rhuQQnSoJr6K91JBERGfU15dx783F/DB+nyW7yzmxFQVrBaD8zu2YlSfNmR2iSciJHDmUVRU1/HV9mIWbS7gy21FlJ9YtRfqbxP+Rdd4Lu2eyPmdWmuvHPEJKigi4tOKyqr4aMMhFq4/yLcHHA3nbRaD7m3sDGoXy+D0lvRLa+F3IwbHKmtYsrWIRZsLWLajuGGuDkB8dAiXdEtgRPcEBqbFanKx+BwVFBHxG7uKylm4/iAfbshn35HKRo9ZDOiaFM2g9JYMSo9lYHosMeG+s8R+dZ2TrYfK+PbAMTbkOfj2wDF2FZfzv7+V27YM55LuCVzSLYFeyTFYNFIiPkwFRUT8Ul5JJav2lrB67xFW7S35QWEByEiIYlB6LAPSY2nfOpKU2HAiveCykNPlZldRORvyjrHhwDG+PeBgW0Eptc4f/gruHB/FJd0TuLRHAp3jo3QXjvgNFRQRCQgFjipWnSgrq/YcYXdxxUmfFxsRTEpsOKmx4aTGhpEaG05Ki3BSYsNJtId65FLJ8RonxWXVFJdX1f/zu6O8mt1FFWzKd1B5YtG072frmWynZ3IMvU78s3WUJgWLf1JBEZGAVFxWzeoTIyzr846xv6Sy0d0uJ2OzGLRpEUZsRDBBFgs2q4HNasFmMbBZDIKsJ85ZTpyzGlgMg5LKGorLqjl8ooiU/c8E1h8TEWylexs7vVJi6Jlsp1dyDMktwjRCIgFDBUVE5ITSqlrySirJKzlOXkkl+08ceSWVHDh6nBqn6+df5BSF2CzERYfQOjKE1lEnjshQkluE0TPZTrvWkbrbRgLa6Xx+m39hVkSkCUWHBtEtyU63pB9uUuhyuSksq2LfkUpKj9dS53JT63RR53RT53JR63Tj/O6cy02ds/6cy+2mRXjwf0vIiSMqxKbREBEPUUERkYBlsRgk2sO0eZ6IF9JN9CIiIuJ1VFBERETE66igiIiIiNdRQRERERGvo4IiIiIiXkcFRURERLyOqQXlpZdeIi0tjdDQUAYNGsTq1avNjCMiIiJewrSC8s477zB16lQefvhh1q1bR69evRgxYgRFRUVmRRIREREvYVpBeeaZZ5gwYQLjx4+na9euzJo1i/DwcF577TWzIomIiIiXMKWg1NTUkJOTQ2Zm5n+DWCxkZmaSnZ39g+dXV1dTWlra6BARERH/ZUpBOXz4ME6nk/j4+Ebn4+PjKSgo+MHzs7KysNvtDUdKSkpzRRURERET+MRdPNOnT8fhcDQceXl5ZkcSERGRJmTKZoGtWrXCarVSWFjY6HxhYSEJCQk/eH5ISAghISHNFU9ERERMZkpBCQ4Opl+/fixZsoRRo0YB4HK5WLJkCZMnT/7Zr3e73QCaiyIiIuJDvvvc/u5z/KeYUlAApk6dyi233EL//v0ZOHAgzz33HBUVFYwfP/5nv7asrAxAc1FERER8UFlZGXa7/SefY1pBuf766ykuLmbGjBkUFBTQu3dvFi1a9IOJsyeTlJREXl4eUVFRGIbRDGm9X2lpKSkpKeTl5REdHW12HL+n97v56T1vXnq/m18gvOdut5uysjKSkpJ+9rmG+1TGWcTrlZaWYrfbcTgcfvsX25vo/W5+es+bl97v5qf3vDGfuItHREREAosKioiIiHgdFRQ/ERISwsMPP6zbsZuJ3u/mp/e8een9bn56zxvTHBQRERHxOhpBEREREa+jgiIiIiJeRwVFREREvI4KioiIiHgdFRQ/Vl1dTe/evTEMg/Xr15sdx2/l5uZy++23k56eTlhYGO3bt+fhhx+mpqbG7Gh+46WXXiItLY3Q0FAGDRrE6tWrzY7kt7KyshgwYABRUVHExcUxatQotm/fbnasgPH4449jGAZTpkwxO4rpVFD82IMPPnhKywnL2dm2bRsul4tXXnmFzZs38+yzzzJr1ix+97vfmR3NL7zzzjtMnTqVhx9+mHXr1tGrVy9GjBhBUVGR2dH80tKlS5k0aRIrV65k8eLF1NbWMnz4cCoqKsyO5vfWrFnDK6+8Qs+ePc2O4h3c4pc++eQTd0ZGhnvz5s1uwP3NN9+YHSmgPPnkk+709HSzY/iFgQMHuidNmtTwZ6fT6U5KSnJnZWWZmCpwFBUVuQH30qVLzY7i18rKytwdO3Z0L1682H3BBRe477nnHrMjmU4jKH6osLCQCRMm8NZbbxEeHm52nIDkcDiIjY01O4bPq6mpIScnh8zMzIZzFouFzMxMsrOzTUwWOBwOB4D+PjexSZMmMXLkyEZ/1wOdabsZS9Nwu93ceuut3HnnnfTv35/c3FyzIwWcXbt28cILL/D000+bHcXnHT58GKfT+YNdzuPj49m2bZtJqQKHy+ViypQpDB06lO7du5sdx2/NmzePdevWsWbNGrOjeBWNoPiIadOmYRjGTx7btm3jhRdeoKysjOnTp5sd2eed6nv+vw4ePMgll1zCmDFjmDBhgknJRTxj0qRJbNq0iXnz5pkdxW/l5eVxzz33MGfOHEJDQ82O41W01L2PKC4u5siRIz/5nHbt2nHdddfx0UcfYRhGw3mn04nVamXcuHHMnj27qaP6jVN9z4ODgwHIz89n2LBhDB48mDfeeAOLRf3/bNXU1BAeHs57773HqFGjGs7fcsstHDt2jIULF5oXzs9NnjyZhQsXsmzZMtLT082O47c++OADrr76aqxWa8M5p9OJYRhYLBaqq6sbPRZIVFD8zP79+yktLW34c35+PiNGjOC9995j0KBBJCcnm5jOfx08eJALL7yQfv368Y9//CNgf6E0hUGDBjFw4EBeeOEFoP6yQ2pqKpMnT2batGkmp/M/brebu+++mwULFvDVV1/RsWNHsyP5tbKyMvbt29fo3Pjx48nIyOC3v/1tQF9a0xwUP5Oamtroz5GRkQC0b99e5aSJHDx4kGHDhtG2bVuefvppiouLGx5LSEgwMZl/mDp1Krfccgv9+/dn4MCBPPfcc1RUVDB+/Hizo/mlSZMmMXfuXBYuXEhUVBQFBQUA2O12wsLCTE7nf6Kion5QQiIiImjZsmVAlxNQQRE5a4sXL2bXrl3s2rXrByVQA5Rn7/rrr6e4uJgZM2ZQUFBA7969WbRo0Q8mzopnzJw5E4Bhw4Y1Ov/6669z6623Nn8gCVi6xCMiIiJeR7P4RERExOuooIiIiIjXUUERERERr6OCIiIiIl5HBUVERES8jgqKiIiIeB0VFBEREfE6KigiIiLidVRQRERExOuooIiIiIjXUUERERERr6OCIiIiIl7n/wOmIpCi+M1VdAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# And now we plot this using matplotlib\n",
"plt.plot(xs, ys)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we need to see what is the derivative of this function f(x) at any single input point x\n",
"\\\n",
"\\\n",
"So what is the derivative at different point in the x-axis to the function f(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can check the derivative of the value by considering a very small value of h (almost close to zero)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"h = 0.001\n",
"x = 3.0"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"20.014003000000002"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now, if we take the f(x) value directly, we know we get 20.0 (Already done in above cells)\n",
"\n",
"# Lets say what if we add the value of h to it, so we are nudging it to a slighly more positive direction\n",
"# So the value must be slightly more than 20\n",
"\n",
"f(x+h)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.01400300000000243"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now, by how much that above value has increased shows us the strength or the size of that slope\n",
"\n",
"# Therefore, Next we see how much the function has responded\n",
"\n",
"f(x+h) - f(x)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"14.00300000000243"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Next we have to normalise it by adding the value rise of the run i.e. h, to get the value of the slope\n",
"\n",
"(f(x+h) - f(x))/h"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Therefore, at 3 i.e. when x=3, the slope is **14**.\n",
"\\\n",
"\\\n",
"You can see the same value if you calculate it manually using the derivative formula:\n",
"\\\n",
"=> Derivative of 3x^2 - 4x +5 \\\n",
"=> 6x-4 \\\n",
"=> 6(3) - 4 \\\n",
"=> 18 -4 \\\n",
"=> **14**"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-22.00000039920269"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now what if we add a negative value for x?\n",
"# Then even the function will become negative. Therefore, we will be getting a negative sign slope\n",
"\n",
"h = 0.00000001 # Cant make this too small, as unlike in theory, computer can handle only a finite amount. Therefore make it too small and it will directly return 0 :)\n",
"x = -3.0\n",
"(f(x+h) - f(x))/h\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.0"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now at some point the slop must be 0, therefore nudging a small value either way from that point, it still remains 0\n",
"# In this case, for the function it is at around x = 2/3\n",
"\n",
"h = 0.00000001\n",
"x = 2/3\n",
"(f(x+h) - f(x))/h"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|