File size: 6,334 Bytes
26275ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import cv2
import json
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models, transforms
from datetime import datetime
from torchvision.models import mobilenet_v2, MobileNet_V2_Weights

try:
    from ucf101_config import UCF101_CLASSES
    UCF101_AVAILABLE = True
except ImportError:
    UCF101_AVAILABLE = False
    print("[WARNING] UCF101 config not found, using default configuration")

class CNN_GRU(nn.Module):
    def __init__(self, cnn_model='mobilenetv2', hidden_size=128, num_layers=1,

                 num_classes=5, dropout=0.5, FREEZE_BACKBONE=True):
        super(CNN_GRU, self).__init__()

        if cnn_model == 'mobilenetv2':
            cnn = models.mobilenet_v2(pretrained=True)
            self.cnn_out_features = cnn.last_channel
            self.cnn = cnn.features
        elif cnn_model == 'efficientnet_b0':
            import timm
            cnn = timm.create_model('efficientnet_b0', pretrained=True)
            self.cnn_out_features = cnn.classifier.in_features
            cnn.classifier = nn.Identity()
            self.cnn = cnn
        else:
            raise ValueError("Invalid CNN model")

        if FREEZE_BACKBONE:
            for p in self.cnn.parameters():
                p.requires_grad = False

        self.gru = nn.GRU(self.cnn_out_features,
                          hidden_size,
                          num_layers=num_layers,
                          batch_first=True, dropout=dropout if num_layers > 1 else 0)

        self.dropout = nn.Dropout(dropout)
        self.fc = nn.Linear(hidden_size, num_classes)

    def forward(self, x):
        b, t, c, h, w = x.size()
        x = x.view(b * t, c, h, w)
        feats = self.cnn(x)
        feats = F.adaptive_avg_pool2d(feats, 1).view(b, t, -1)
        out, _ = self.gru(feats)
        out = self.dropout(out[:, -1])
        return self.fc(out)


def get_transform(resize=(112, 112), augment=False):
    transforms_list = [
        transforms.ToPILImage(),
        transforms.Resize(resize),
    ]

    if augment:
        transforms_list.extend([
            transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
            transforms.RandomHorizontalFlip(p=0.5),
        ])
    transforms_list.extend([
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406],
                             [0.229, 0.224, 0.225]),
    ])
    return transforms.Compose(transforms_list)


def preprocess_frames(frames, seq_len=16, resize=(112, 112), augment=False):
    transform = get_transform(resize=resize, augment=augment)
    rgb_frames = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
    total_frames = len(rgb_frames)

    if total_frames >= seq_len:
        indices = np.linspace(0, total_frames - 1, seq_len, dtype=int)
    else:
        indices = np.pad(np.arange(total_frames), (0, seq_len - total_frames), mode='wrap')

    sampled_frames = [rgb_frames[i] for i in indices]
    transformed_frames = [transform(frame) for frame in sampled_frames]
    frames_tensor = torch.stack(transformed_frames)  # [T, C, H, W]
    return frames_tensor


def load_action_model(model_path="best_model.pt", device='cpu',

                      num_classes=5, hidden_size=128):
    if not os.path.exists(model_path):
        print(f"[ERROR] Model file not found: {model_path}")
        return None
    model = CNN_GRU(num_classes=num_classes, hidden_size=hidden_size)
    checkpoint = torch.load(model_path, map_location=device)
    model.load_state_dict(checkpoint)
    model.to(device)
    model.eval()
    print(f"[INFO] Loaded model from {model_path} on {device}")
    return model


def predict_action(model, frames_tensor, label_map_path="label_map.json", device="cpu", top_k=3):
    if model is None:
        return {"action": "Model not loaded", "confidence": 0.0, "top_predictions": []}

    idx_to_class = {}
    if os.path.exists(label_map_path):
        try:
            with open(label_map_path, 'r') as f:
                label_map = json.load(f)
            idx_to_class = {v: k for k, v in label_map.items()}
            print(f"[INFO] Loaded {len(idx_to_class)} classes from {label_map_path}")
        except Exception as e:
            print(f"[WARNING] Could not load label map: {e}")

    if not idx_to_class and UCF101_AVAILABLE:
        idx_to_class = {i: class_name for i, class_name in enumerate(UCF101_CLASSES)}
        print("[INFO] Using default UCF101 class mapping")
    elif not idx_to_class:
        idx_to_class = {0: 'CricketShot', 1: 'PlayingCello', 2: 'Punch',
                        3: 'ShavingBeard', 4: 'TennisSwing'}
        print("[WARNING] Using minimal default labels.")

    try:
        with torch.no_grad():
            frames_tensor = frames_tensor.unsqueeze(0).to(device)  # [1, T, C, H, W]
            output = model(frames_tensor)
            probabilities = torch.softmax(output, dim=1)
            top_k_probs, top_k_indices = torch.topk(probabilities, min(top_k, probabilities.size(1)))

            predicted_idx = top_k_indices[0][0].item()
            predicted_class = idx_to_class.get(predicted_idx, f"Class_{predicted_idx}")
            confidence = top_k_probs[0][0].item()

            top_predictions = [
                {"class": idx_to_class.get(idx.item(), f"Class_{idx.item()}"),
                 "confidence": prob.item()}
                for prob, idx in zip(top_k_probs[0], top_k_indices[0])
            ]

            return {
                "action": predicted_class,
                "confidence": confidence,
                "top_predictions": top_predictions
            }
    except Exception as e:
        print(f"[ERROR] Prediction failed: {e}")
        return {"action": "Error", "confidence": 0.0, "top_predictions": []}


def log_action_prediction(action_label, confidence, log_file="logs/action_log.txt"):
    os.makedirs(os.path.dirname(log_file), exist_ok=True)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
    with open(log_file, 'a', encoding='utf-8') as f:
        f.write(f"[{timestamp}] ACTION: {action_label} (confidence: {confidence:.2f})\n")