Kevin King
commited on
Commit
·
96d3f5e
1
Parent(s):
b9a3569
Upload My Trained PPO Agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -206.49 +/- 91.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14cf7cf130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14cf7cf1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14cf7cf250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14cf7cf2e0>", "_build": "<function ActorCriticPolicy._build at 0x7f14cf7cf370>", "forward": "<function ActorCriticPolicy.forward at 0x7f14cf7cf400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14cf7cf490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14cf7cf520>", "_predict": "<function ActorCriticPolicy._predict at 0x7f14cf7cf5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14cf7cf640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14cf7cf6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14cf7cf760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f14cf7d1cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683764452387518412, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAN1n5D4HUZY/g+/wPqyxUL8YH5I+nraVPgAAAAAAAAAAU1URviOVfj+kzZy+5nc3vxqQKD0o24+9AAAAAAAAAAAAZdk9fKjvPnJUdT6QdaC/OI21voq0pL0AAAAAAAAAAJrFZr0hkqU/+NkCv1nxA782VLw9FsdxPgAAAAAAAAAA/X/FPiWBED8vzEY/0N+Qv07UM76qdCo+AAAAAAAAAACtQHs+Q9+KP6Us2D6x5mO/yK/TvjZEH74AAAAAAAAAAIDzAL4N08I/jhWhvl9DEL4ZGaQ9nJq4PQAAAAAAAAAAUGRQvvpVWj/I8bW+kNZgvz4hoz0Ir3U+AAAAAAAAAACGDuW+8xJBP3HqKr+AoVa/SiuGPfWRk74AAAAAAAAAAMWrwb69eDY+zJ0qv+8Pg78hBf8+Cs3fPQAAAAAAAIA/LaUfPqHfmj/zKhY/9lrhvg1rGL7HRTW+AAAAAAAAAADN/Nw6EGu1P1LbLj6q2pE+QS7/ulRuHr0AAAAAAAAAAM3MOLpD+L4/x48qusPR5z5iHOQ89oO2PQAAAAAAAAAAACikOyi/rj9eQoc9h7rPvpmWTjya89M9AAAAAAAAAACaEPW8PNpxPzoXbDxgfRK/vQOtvG6DOD0AAAAAAAAAAM1N5LwcXYE/LnvtvUPrOb9aGK29kKuTvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHTaZKe05U+MAWyUS22MAXSUR0Bk38IAwPAgdX2UKGgGR8B6d0HAymALaAdLaGgIR0Bk37Bj4HopdX2UKGgGR8BkmJEF4cFRaAdLPGgIR0Bk32KhtcfOdX2UKGgGR8BUuPT9bX6JaAdLV2gIR0Bk40/OdGy5dX2UKGgGR8BpUykVN5+paAdLcWgIR0Bk5F83Mpw0dX2UKGgGR8Bh3TZ+QU5/aAdLb2gIR0Bk5uYBvJiidX2UKGgGR8BdLLw4KhL5aAdLbWgIR0Bk5oVGkN4JdX2UKGgGR8BWBwmmce8xaAdLQGgIR0Bk5tMAWBSUdX2UKGgGR8Bl5Mt/WlMzaAdLTWgIR0Bk5neaa1CxdX2UKGgGR8BjXSC8OCoTaAdLe2gIR0Bk6BBsyi22dX2UKGgGR8BnR0A7xNItaAdLZmgIR0Bk55oh6jWTdX2UKGgGR8BNKmgBcRlIaAdLQ2gIR0Bk6ACGN70GdX2UKGgGR8B+62BGx2SuaAdLZ2gIR0Bk6RW912aEdX2UKGgGR8B9kXXtjTa1aAdLXmgIR0Bk6R/qgRK6dX2UKGgGR8BaId21UlzEaAdLe2gIR0Bk6UriEQGwdX2UKGgGR8Bw692ECeVcaAdLTGgIR0Bk6XMnqmj1dX2UKGgGR8Bg3hrULDyfaAdLZ2gIR0Bk6ViONo8IdX2UKGgGR8BoUBwsGxD9aAdLaGgIR0Bk6w3FUADJdX2UKGgGR8BZ2MoUi6g/aAdLPWgIR0Bk64xDb8FZdX2UKGgGR8Bb/AsTWXkYaAdLcmgIR0Bk7avNeMQ3dX2UKGgGR8BdQUYbbUPQaAdLXmgIR0Bk7nDej2zwdX2UKGgGR8Bap/0dzXBhaAdLSGgIR0Bk75dv863idX2UKGgGR8BZjK9K28ZlaAdLTmgIR0Bk8JpSJj2BdX2UKGgGR8BiS22sq8UVaAdLPWgIR0Bk8OmtQsPKdX2UKGgGR8BHcqa5PM0QaAdLP2gIR0Bk8RYFJQLvdX2UKGgGR8BsLzrC3w1BaAdLSWgIR0Bk8aFCb+cZdX2UKGgGR8BkZWZVn27GaAdLR2gIR0Bk8xjtoi9qdX2UKGgGR8Bfa1M23rleaAdLYWgIR0Bk9bLr5ZbIdX2UKGgGR8B0YFK7I1cdaAdLaWgIR0Bk9U3uNPxhdX2UKGgGR8ByrEmlZX+3aAdLaGgIR0Bk+HS+g13udX2UKGgGR8Be6+t0V8CxaAdLSGgIR0Bk+luejEehdX2UKGgGR8BqO1MAWBSUaAdLd2gIR0Bk+bFn7HhkdX2UKGgGR8B5EXSDyvs7aAdLiGgIR0Bk+wcDKYAsdX2UKGgGR8BynalXRw6yaAdLZWgIR0Bk/Jzo2XLNdX2UKGgGR8BhBRFspG4JaAdLeWgIR0Bk/LBGhEjPdX2UKGgGR8Bh1h+nZTQ3aAdLdWgIR0Bk/h0dRzikdX2UKGgGR8ByyuM+/xlQaAdLVmgIR0BlABl8PWhAdX2UKGgGR8BiCp44ZMtcaAdLVWgIR0BlAD7ZWaMKdX2UKGgGR8BjhpLdvbXZaAdLWGgIR0BlAPSa3I+4dX2UKGgGR8B0qct03fhuaAdLUmgIR0BlAcabWmP6dX2UKGgGR8BwShK5CngpaAdLcGgIR0BlAnA44p+ddX2UKGgGR8BiFhkmQbMpaAdLS2gIR0BlAvikwevIdX2UKGgGR8B3RnHzYmLMaAdLbWgIR0BlAwdIXj2jdX2UKGgGR8BqfIX/HYHxaAdLZWgIR0BlA4gNgBtDdX2UKGgGR8AeXOyE+PilaAdLWGgIR0BlBKPjn3cpdX2UKGgGR8BW7RBE8aGYaAdLPGgIR0BlBSsbNr0rdX2UKGgGR8BuTtmJ3xFzaAdLR2gIR0BlBaZDzAerdX2UKGgGR8BLgld9lVcVaAdLRWgIR0BlCWy5Zr57dX2UKGgGR8BsiKZtvXK9aAdLZmgIR0BlCdIbwSamdX2UKGgGR8BUKO0PYnOTaAdLO2gIR0BlCdM0xdpqdX2UKGgGR8ByJG18b70naAdLVmgIR0BlCsQRPGhmdX2UKGgGR8BrK66QNkOJaAdLb2gIR0BlDNc0Ltu2dX2UKGgGR8BpXChcqvvCaAdLX2gIR0BlDFYwIt17dX2UKGgGR8BkCQGr0aqCaAdLT2gIR0BlDrrqt5lfdX2UKGgGR8BIfc3EQ5FPaAdLRmgIR0BlDpSrHU+cdX2UKGgGR8BZ9pDRc/t6aAdLTGgIR0BlD3hKlHjIdX2UKGgGR8BbTs2FWXC1aAdLQmgIR0BlDn/rB0p3dX2UKGgGR8BU2WS+xnnMaAdLUGgIR0BlD6KP4mCzdX2UKGgGR8BhiZw84gieaAdLZmgIR0BlEQ80UGmldX2UKGgGR8B5x/mmtQsPaAdLZGgIR0BlEVeQdS2qdX2UKGgGR8BgDLW3BpHqaAdLU2gIR0BlErW07bL2dX2UKGgGR8BRgJ9qk/KRaAdLR2gIR0BlFdE9dNWVdX2UKGgGR8BkCYqLCN0eaAdLUGgIR0BlF3HLidaudX2UKGgGR8BSHALux8lYaAdLamgIR0BlFnnwG4ZudX2UKGgGR8BdPETL4etCaAdLbGgIR0BlF9pRGc4HdX2UKGgGR8BMw6jN6gM+aAdLPmgIR0BlGV/e+Eh8dX2UKGgGR8BcafHYHxBmaAdLO2gIR0BlGJazNUwSdX2UKGgGR8BdvH4wh4dIaAdLYmgIR0BlGiGrS3LFdX2UKGgGR8B0r18LKFIvaAdLW2gIR0BlHH95yEL6dX2UKGgGR8BgP1VzZHuraAdLaWgIR0BlHMtqYZ2qdX2UKGgGR8BlC5u0kWykaAdLYWgIR0BlHRH3Dej3dX2UKGgGR8B7F5weeWfLaAdLV2gIR0BlHZHZsbeedX2UKGgGR8BfM/N/vv0AaAdLWWgIR0BlHsDwH7gsdX2UKGgGR8B5Z9b4agmJaAdLbWgIR0BlIktmL9/CdX2UKGgGR8Bt6GgxrSE2aAdLZ2gIR0BlIzrs0HhTdX2UKGgGR8Bo+F7a7EpBaAdLd2gIR0BlJbiADq4ZdX2UKGgGR8B/83posZpBaAdLVWgIR0BlJiOinHeadX2UKGgGR8BiJYOYplSTaAdLTWgIR0BlJTq+rU9ZdX2UKGgGR8Bonnu1F6RhaAdLWmgIR0BlJhEH+qBFdX2UKGgGR8Bp/KqXF98aaAdLcWgIR0BlJpt52QnydX2UKGgGR8Bmt/geii7DaAdLVWgIR0BlJ1VFQVKxdX2UKGgGR8BcCHlwLmZFaAdLc2gIR0BlKcqDsdDIdX2UKGgGR8B55posZpBYaAdLWGgIR0BlK9O2y9mIdX2UKGgGR8BoXngxagVXaAdLV2gIR0BlLCUC7sfJdX2UKGgGR8BTm5D/lyR0aAdLcmgIR0BlLSrcTJyRdX2UKGgGR8Bi1CFj/dZaaAdLWmgIR0BlLSmIj4YadX2UKGgGR8BkgOETQE6laAdLc2gIR0BlLhhpg1FZdX2UKGgGR8B4GXcO9WZJaAdLZWgIR0BlLkD4gzP9dX2UKGgGR8BYA5QP7N0OaAdLRWgIR0BlLzebd8ArdX2UKGgGR8BgwmmtQsPKaAdLTGgIR0BlL5IxxkupdX2UKGgGR8Bn8HYvnKW+aAdLPWgIR0BlMMdBBzFNdX2UKGgGR8BsCNVtGd7OaAdLPWgIR0BlL9oHs1KodX2UKGgGR8By6AYVIqb0aAdLaWgIR0BlMRRXOnl5dX2UKGgGR8BjTWwu/UONaAdLTWgIR0BlMxT/ACXAdX2UKGgGR8BjEA/zJ6ppaAdLTmgIR0BlNABxPwd9dX2UKGgGR8Bog9EkSmIkaAdLT2gIR0BlM7EUCaJAdX2UKGgGR8BcSy48U21laAdLUGgIR0BlN9kpZwGXdX2UKGgGR8B3z3KZDzAfaAdLXGgIR0BlN4FkhA4XdX2UKGgGR8BMgoOYplSTaAdLQ2gIR0BlONhE0BOpdX2UKGgGR8BxhQojOcDsaAdLPWgIR0BlOlLUTcqOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a52b2202d794ee7660de9efc1b41954fc045206d61ae4f16d4f8572cc3a4c14
|
3 |
+
size 146615
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f14cf7cf130>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14cf7cf1c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14cf7cf250>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14cf7cf2e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f14cf7cf370>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f14cf7cf400>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14cf7cf490>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14cf7cf520>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f14cf7cf5b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14cf7cf640>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14cf7cf6d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14cf7cf760>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f14cf7d1cc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 10000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1683764452387518412,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAN1n5D4HUZY/g+/wPqyxUL8YH5I+nraVPgAAAAAAAAAAU1URviOVfj+kzZy+5nc3vxqQKD0o24+9AAAAAAAAAAAAZdk9fKjvPnJUdT6QdaC/OI21voq0pL0AAAAAAAAAAJrFZr0hkqU/+NkCv1nxA782VLw9FsdxPgAAAAAAAAAA/X/FPiWBED8vzEY/0N+Qv07UM76qdCo+AAAAAAAAAACtQHs+Q9+KP6Us2D6x5mO/yK/TvjZEH74AAAAAAAAAAIDzAL4N08I/jhWhvl9DEL4ZGaQ9nJq4PQAAAAAAAAAAUGRQvvpVWj/I8bW+kNZgvz4hoz0Ir3U+AAAAAAAAAACGDuW+8xJBP3HqKr+AoVa/SiuGPfWRk74AAAAAAAAAAMWrwb69eDY+zJ0qv+8Pg78hBf8+Cs3fPQAAAAAAAIA/LaUfPqHfmj/zKhY/9lrhvg1rGL7HRTW+AAAAAAAAAADN/Nw6EGu1P1LbLj6q2pE+QS7/ulRuHr0AAAAAAAAAAM3MOLpD+L4/x48qusPR5z5iHOQ89oO2PQAAAAAAAAAAACikOyi/rj9eQoc9h7rPvpmWTjya89M9AAAAAAAAAACaEPW8PNpxPzoXbDxgfRK/vQOtvG6DOD0AAAAAAAAAAM1N5LwcXYE/LnvtvUPrOb9aGK29kKuTvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.6384000000000001,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHTaZKe05U+MAWyUS22MAXSUR0Bk38IAwPAgdX2UKGgGR8B6d0HAymALaAdLaGgIR0Bk37Bj4HopdX2UKGgGR8BkmJEF4cFRaAdLPGgIR0Bk32KhtcfOdX2UKGgGR8BUuPT9bX6JaAdLV2gIR0Bk40/OdGy5dX2UKGgGR8BpUykVN5+paAdLcWgIR0Bk5F83Mpw0dX2UKGgGR8Bh3TZ+QU5/aAdLb2gIR0Bk5uYBvJiidX2UKGgGR8BdLLw4KhL5aAdLbWgIR0Bk5oVGkN4JdX2UKGgGR8BWBwmmce8xaAdLQGgIR0Bk5tMAWBSUdX2UKGgGR8Bl5Mt/WlMzaAdLTWgIR0Bk5neaa1CxdX2UKGgGR8BjXSC8OCoTaAdLe2gIR0Bk6BBsyi22dX2UKGgGR8BnR0A7xNItaAdLZmgIR0Bk55oh6jWTdX2UKGgGR8BNKmgBcRlIaAdLQ2gIR0Bk6ACGN70GdX2UKGgGR8B+62BGx2SuaAdLZ2gIR0Bk6RW912aEdX2UKGgGR8B9kXXtjTa1aAdLXmgIR0Bk6R/qgRK6dX2UKGgGR8BaId21UlzEaAdLe2gIR0Bk6UriEQGwdX2UKGgGR8Bw692ECeVcaAdLTGgIR0Bk6XMnqmj1dX2UKGgGR8Bg3hrULDyfaAdLZ2gIR0Bk6ViONo8IdX2UKGgGR8BoUBwsGxD9aAdLaGgIR0Bk6w3FUADJdX2UKGgGR8BZ2MoUi6g/aAdLPWgIR0Bk64xDb8FZdX2UKGgGR8Bb/AsTWXkYaAdLcmgIR0Bk7avNeMQ3dX2UKGgGR8BdQUYbbUPQaAdLXmgIR0Bk7nDej2zwdX2UKGgGR8Bap/0dzXBhaAdLSGgIR0Bk75dv863idX2UKGgGR8BZjK9K28ZlaAdLTmgIR0Bk8JpSJj2BdX2UKGgGR8BiS22sq8UVaAdLPWgIR0Bk8OmtQsPKdX2UKGgGR8BHcqa5PM0QaAdLP2gIR0Bk8RYFJQLvdX2UKGgGR8BsLzrC3w1BaAdLSWgIR0Bk8aFCb+cZdX2UKGgGR8BkZWZVn27GaAdLR2gIR0Bk8xjtoi9qdX2UKGgGR8Bfa1M23rleaAdLYWgIR0Bk9bLr5ZbIdX2UKGgGR8B0YFK7I1cdaAdLaWgIR0Bk9U3uNPxhdX2UKGgGR8ByrEmlZX+3aAdLaGgIR0Bk+HS+g13udX2UKGgGR8Be6+t0V8CxaAdLSGgIR0Bk+luejEehdX2UKGgGR8BqO1MAWBSUaAdLd2gIR0Bk+bFn7HhkdX2UKGgGR8B5EXSDyvs7aAdLiGgIR0Bk+wcDKYAsdX2UKGgGR8BynalXRw6yaAdLZWgIR0Bk/Jzo2XLNdX2UKGgGR8BhBRFspG4JaAdLeWgIR0Bk/LBGhEjPdX2UKGgGR8Bh1h+nZTQ3aAdLdWgIR0Bk/h0dRzikdX2UKGgGR8ByyuM+/xlQaAdLVmgIR0BlABl8PWhAdX2UKGgGR8BiCp44ZMtcaAdLVWgIR0BlAD7ZWaMKdX2UKGgGR8BjhpLdvbXZaAdLWGgIR0BlAPSa3I+4dX2UKGgGR8B0qct03fhuaAdLUmgIR0BlAcabWmP6dX2UKGgGR8BwShK5CngpaAdLcGgIR0BlAnA44p+ddX2UKGgGR8BiFhkmQbMpaAdLS2gIR0BlAvikwevIdX2UKGgGR8B3RnHzYmLMaAdLbWgIR0BlAwdIXj2jdX2UKGgGR8BqfIX/HYHxaAdLZWgIR0BlA4gNgBtDdX2UKGgGR8AeXOyE+PilaAdLWGgIR0BlBKPjn3cpdX2UKGgGR8BW7RBE8aGYaAdLPGgIR0BlBSsbNr0rdX2UKGgGR8BuTtmJ3xFzaAdLR2gIR0BlBaZDzAerdX2UKGgGR8BLgld9lVcVaAdLRWgIR0BlCWy5Zr57dX2UKGgGR8BsiKZtvXK9aAdLZmgIR0BlCdIbwSamdX2UKGgGR8BUKO0PYnOTaAdLO2gIR0BlCdM0xdpqdX2UKGgGR8ByJG18b70naAdLVmgIR0BlCsQRPGhmdX2UKGgGR8BrK66QNkOJaAdLb2gIR0BlDNc0Ltu2dX2UKGgGR8BpXChcqvvCaAdLX2gIR0BlDFYwIt17dX2UKGgGR8BkCQGr0aqCaAdLT2gIR0BlDrrqt5lfdX2UKGgGR8BIfc3EQ5FPaAdLRmgIR0BlDpSrHU+cdX2UKGgGR8BZ9pDRc/t6aAdLTGgIR0BlD3hKlHjIdX2UKGgGR8BbTs2FWXC1aAdLQmgIR0BlDn/rB0p3dX2UKGgGR8BU2WS+xnnMaAdLUGgIR0BlD6KP4mCzdX2UKGgGR8BhiZw84gieaAdLZmgIR0BlEQ80UGmldX2UKGgGR8B5x/mmtQsPaAdLZGgIR0BlEVeQdS2qdX2UKGgGR8BgDLW3BpHqaAdLU2gIR0BlErW07bL2dX2UKGgGR8BRgJ9qk/KRaAdLR2gIR0BlFdE9dNWVdX2UKGgGR8BkCYqLCN0eaAdLUGgIR0BlF3HLidaudX2UKGgGR8BSHALux8lYaAdLamgIR0BlFnnwG4ZudX2UKGgGR8BdPETL4etCaAdLbGgIR0BlF9pRGc4HdX2UKGgGR8BMw6jN6gM+aAdLPmgIR0BlGV/e+Eh8dX2UKGgGR8BcafHYHxBmaAdLO2gIR0BlGJazNUwSdX2UKGgGR8BdvH4wh4dIaAdLYmgIR0BlGiGrS3LFdX2UKGgGR8B0r18LKFIvaAdLW2gIR0BlHH95yEL6dX2UKGgGR8BgP1VzZHuraAdLaWgIR0BlHMtqYZ2qdX2UKGgGR8BlC5u0kWykaAdLYWgIR0BlHRH3Dej3dX2UKGgGR8B7F5weeWfLaAdLV2gIR0BlHZHZsbeedX2UKGgGR8BfM/N/vv0AaAdLWWgIR0BlHsDwH7gsdX2UKGgGR8B5Z9b4agmJaAdLbWgIR0BlIktmL9/CdX2UKGgGR8Bt6GgxrSE2aAdLZ2gIR0BlIzrs0HhTdX2UKGgGR8Bo+F7a7EpBaAdLd2gIR0BlJbiADq4ZdX2UKGgGR8B/83posZpBaAdLVWgIR0BlJiOinHeadX2UKGgGR8BiJYOYplSTaAdLTWgIR0BlJTq+rU9ZdX2UKGgGR8Bonnu1F6RhaAdLWmgIR0BlJhEH+qBFdX2UKGgGR8Bp/KqXF98aaAdLcWgIR0BlJpt52QnydX2UKGgGR8Bmt/geii7DaAdLVWgIR0BlJ1VFQVKxdX2UKGgGR8BcCHlwLmZFaAdLc2gIR0BlKcqDsdDIdX2UKGgGR8B55posZpBYaAdLWGgIR0BlK9O2y9mIdX2UKGgGR8BoXngxagVXaAdLV2gIR0BlLCUC7sfJdX2UKGgGR8BTm5D/lyR0aAdLcmgIR0BlLSrcTJyRdX2UKGgGR8Bi1CFj/dZaaAdLWmgIR0BlLSmIj4YadX2UKGgGR8BkgOETQE6laAdLc2gIR0BlLhhpg1FZdX2UKGgGR8B4GXcO9WZJaAdLZWgIR0BlLkD4gzP9dX2UKGgGR8BYA5QP7N0OaAdLRWgIR0BlLzebd8ArdX2UKGgGR8BgwmmtQsPKaAdLTGgIR0BlL5IxxkupdX2UKGgGR8Bn8HYvnKW+aAdLPWgIR0BlMMdBBzFNdX2UKGgGR8BsCNVtGd7OaAdLPWgIR0BlL9oHs1KodX2UKGgGR8By6AYVIqb0aAdLaWgIR0BlMRRXOnl5dX2UKGgGR8BjTWwu/UONaAdLTWgIR0BlMxT/ACXAdX2UKGgGR8BjEA/zJ6ppaAdLTmgIR0BlNABxPwd9dX2UKGgGR8Bog9EkSmIkaAdLT2gIR0BlM7EUCaJAdX2UKGgGR8BcSy48U21laAdLUGgIR0BlN9kpZwGXdX2UKGgGR8B3z3KZDzAfaAdLXGgIR0BlN4FkhA4XdX2UKGgGR8BMgoOYplSTaAdLQ2gIR0BlONhE0BOpdX2UKGgGR8BxhQojOcDsaAdLPWgIR0BlOlLUTcqOdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da5c533f35585b7d2ae32633630b06b565d54a2157e849cc2a083b514e538446
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a43ef3d1463844f230e4ad579b499652fd26cc18b0e2d688da1fda012738994
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (187 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -206.4850728256628, "std_reward": 91.61974212210136, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-11T00:30:44.766539"}
|