Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -26,23 +26,24 @@ The Swin Transformer is a type of Vision Transformer. It builds hierarchical fea | |
| 26 |  | 
| 27 | 
             
            ### How to use
         | 
| 28 |  | 
| 29 | 
            -
            Here is how to use this model to  | 
| 30 |  | 
| 31 | 
             
            ```python
         | 
| 32 | 
            -
            from transformers import AutoImageProcessor,  | 
| 33 | 
             
            from PIL import Image
         | 
| 34 | 
             
            import requests
         | 
| 35 |  | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 |  | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
|  | |
|  | |
| 41 |  | 
| 42 | 
             
            inputs = processor(images=image, return_tensors="pt")
         | 
| 43 | 
             
            outputs = model(**inputs)
         | 
| 44 | 
             
            logits = outputs.logits
         | 
| 45 | 
            -
            # model predicts one of the 1000 ImageNet classes
         | 
| 46 | 
             
            predicted_class_idx = logits.argmax(-1).item()
         | 
| 47 | 
             
            print("Predicted class:", model.config.id2label[predicted_class_idx])
         | 
| 48 | 
             
            ```
         | 
|  | |
| 26 |  | 
| 27 | 
             
            ### How to use
         | 
| 28 |  | 
| 29 | 
            +
            Here is how to use this model to identify meningioma tumor from a MRI scan:
         | 
| 30 |  | 
| 31 | 
             
            ```python
         | 
| 32 | 
            +
            from transformers import AutoImageProcessor, AutoModelForImageClassification
         | 
| 33 | 
             
            from PIL import Image
         | 
| 34 | 
             
            import requests
         | 
| 35 |  | 
| 36 | 
            +
            processor = AutoImageProcessor.from_pretrained("NeuronZero/MRI-Reader")
         | 
| 37 | 
            +
            model = AutoModelForImageClassification.from_pretrained("NeuronZero/MRI-Reader")
         | 
| 38 |  | 
| 39 | 
            +
            # Dataset url: https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
         | 
| 40 | 
            +
             
         | 
| 41 | 
            +
            image_url = "https://storage.googleapis.com/kagglesdsdata/datasets/672377/1183165/Testing/meningioma_tumor/image%28112%29.jpg?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=databundle-worker-v2%40kaggle-161607.iam.gserviceaccount.com%2F20240326%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240326T125018Z&X-Goog-Expires=345600&X-Goog-SignedHeaders=host&X-Goog-Signature=32461d8d00888de5030d0dac653ecf5301c79a9445320a29c515713611fc8ec5bd6de1f1be490041f0dd937d7165f2bd3176ca926f2f33787a6ca7dbae1db2ce0b3a482a27a6258d4fe64c92ef7004c81488bfede784e50f22742e214cc303e8e9a52c6b4bc1db20e8aafba80589e87028e2f3212436c45fd7bc0a6978af3c2a2a5cbc25dcddf1489aecacaeebc75b93b2e111d391cf82c50a38906f88eec30e928285f043527972eed6d0dd2cd53b7e61c1be82bbefd6f8f38ffe438155e0dcf386425693a61c8c5857d6f4dbea7a8351e496160da261778c5f26d5496243f863ca65caf2b630701a998e79ce0bfa32291b19410a0f72d3399cea86b695c7dd"
         | 
| 42 | 
            +
            image = Image.open(requests.get(image_url, stream=True).raw)
         | 
| 43 |  | 
| 44 | 
             
            inputs = processor(images=image, return_tensors="pt")
         | 
| 45 | 
             
            outputs = model(**inputs)
         | 
| 46 | 
             
            logits = outputs.logits
         | 
|  | |
| 47 | 
             
            predicted_class_idx = logits.argmax(-1).item()
         | 
| 48 | 
             
            print("Predicted class:", model.config.id2label[predicted_class_idx])
         | 
| 49 | 
             
            ```
         |