File size: 6,099 Bytes
8add310 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# 7Gen - MNIST için Gelişmiş Üretici Model
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import os
print("🚀 7Gen - Gelişmiş MNIST Üretici Sistemi 🚀")
# Cihaz ayarları
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Kullanılan cihaz: {device}')
# Hiperparametreler
batch_size = 64
latent_dim = 100
num_classes = 10
num_epochs = 100
lr = 0.0002
# Veri yükleme
transform = transforms.Compose([
transforms.ToTensor(), # Burayı düzelttim
transforms.Normalize([0.5], [0.5])
])
dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Generator modeli
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.Linear(latent_dim + num_classes, 256),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(256),
nn.Linear(256, 512),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(512),
nn.Linear(512, 1024),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(1024),
nn.Linear(1024, 784),
nn.Tanh()
)
def forward(self, noise, labels):
label_embedding = self.label_emb(labels)
gen_input = torch.cat((noise, label_embedding), -1)
img = self.model(gen_input)
img = img.view(img.size(0), 1, 28, 28)
return img
# Discriminator modeli
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.Linear(784 + num_classes, 512),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, img, labels):
img_flat = img.view(img.size(0), -1)
label_embedding = self.label_emb(labels)
d_input = torch.cat((img_flat, label_embedding), -1)
validity = self.model(d_input)
return validity
# Model oluşturma
generator = Generator().to(device)
discriminator = Discriminator().to(device)
# Loss ve optimizer
adversarial_loss = nn.BCELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=lr)
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)
# Klasör oluştur
os.makedirs('generated_images', exist_ok=True)
# Eğitim
print("\n🔥 7Gen Eğitimi Başlıyor...")
for epoch in range(num_epochs):
for i, (imgs, labels) in enumerate(tqdm(dataloader, desc=f"Epoch {epoch+1}/{num_epochs}")):
imgs = imgs.to(device)
labels = labels.to(device)
batch_size = imgs.size(0)
# Ground truth'lar
valid = torch.ones(batch_size, 1).to(device)
fake = torch.zeros(batch_size, 1).to(device)
# Generator eğitimi
optimizer_G.zero_grad()
z = torch.randn(batch_size, latent_dim).to(device)
gen_labels = torch.randint(0, num_classes, (batch_size,)).to(device)
gen_imgs = generator(z, gen_labels)
g_loss = adversarial_loss(discriminator(gen_imgs, gen_labels), valid)
g_loss.backward()
optimizer_G.step()
# Discriminator eğitimi
optimizer_D.zero_grad()
real_loss = adversarial_loss(discriminator(imgs, labels), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach(), gen_labels), fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
print(f"Epoch {epoch+1}/{num_epochs} - D loss: {d_loss:.4f}, G loss: {g_loss:.4f}")
# Her 10 epoch'ta örnek üret
if (epoch + 1) % 10 == 0:
with torch.no_grad():
z = torch.randn(100, latent_dim).to(device)
labels = torch.tensor([i for i in range(10) for _ in range(10)]).to(device)
gen_imgs = generator(z, labels)
gen_imgs = (gen_imgs + 1) / 2
fig, axes = plt.subplots(10, 10, figsize=(10, 10))
for i in range(10):
for j in range(10):
idx = i * 10 + j
axes[i, j].imshow(gen_imgs[idx][0].cpu().numpy(), cmap='gray')
axes[i, j].axis('off')
plt.savefig(f'generated_images/7gen_epoch_{epoch+1}.png')
plt.close()
# Model kaydetme
os.makedirs('models', exist_ok=True)
torch.save(generator.state_dict(), 'models/7gen_generator.pth')
torch.save(discriminator.state_dict(), 'models/7gen_discriminator.pth')
print("\n✅ 7Gen eğitimi tamamlandı!")
# Kullanım örneği
def generate_digit(digit, num_samples=5):
generator.eval()
with torch.no_grad():
z = torch.randn(num_samples, latent_dim).to(device)
labels = torch.full((num_samples,), digit).to(device)
gen_imgs = generator(z, labels)
gen_imgs = (gen_imgs + 1) / 2
plt.figure(figsize=(10, 2))
for i in range(num_samples):
plt.subplot(1, num_samples, i+1)
plt.imshow(gen_imgs[i][0].cpu().numpy(), cmap='gray')
plt.axis('off')
plt.savefig(f'generated_images/digit_{digit}_samples.png')
plt.show()
# Test et
print("\n🎯 Test örnekleri üretiliyor...")
for digit in range(10):
generate_digit(digit, num_samples=5)
print("\n🎉 7Gen hazır! generated_images klasörüne bak.") |