File size: 6,099 Bytes
8add310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# 7Gen - MNIST için Gelişmiş Üretici Model
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import os

print("🚀 7Gen - Gelişmiş MNIST Üretici Sistemi 🚀")

# Cihaz ayarları
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Kullanılan cihaz: {device}')

# Hiperparametreler
batch_size = 64
latent_dim = 100
num_classes = 10
num_epochs = 100
lr = 0.0002

# Veri yükleme
transform = transforms.Compose([
    transforms.ToTensor(),  # Burayı düzelttim
    transforms.Normalize([0.5], [0.5])
])

dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# Generator modeli
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        
        self.label_emb = nn.Embedding(num_classes, num_classes)
        
        self.model = nn.Sequential(
            nn.Linear(latent_dim + num_classes, 256),
            nn.LeakyReLU(0.2),
            nn.BatchNorm1d(256),
            
            nn.Linear(256, 512),
            nn.LeakyReLU(0.2),
            nn.BatchNorm1d(512),
            
            nn.Linear(512, 1024),
            nn.LeakyReLU(0.2),
            nn.BatchNorm1d(1024),
            
            nn.Linear(1024, 784),
            nn.Tanh()
        )
    
    def forward(self, noise, labels):
        label_embedding = self.label_emb(labels)
        gen_input = torch.cat((noise, label_embedding), -1)
        img = self.model(gen_input)
        img = img.view(img.size(0), 1, 28, 28)
        return img

# Discriminator modeli
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        
        self.label_emb = nn.Embedding(num_classes, num_classes)
        
        self.model = nn.Sequential(
            nn.Linear(784 + num_classes, 512),
            nn.LeakyReLU(0.2),
            nn.Dropout(0.3),
            
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2),
            nn.Dropout(0.3),
            
            nn.Linear(256, 1),
            nn.Sigmoid()
        )
    
    def forward(self, img, labels):
        img_flat = img.view(img.size(0), -1)
        label_embedding = self.label_emb(labels)
        d_input = torch.cat((img_flat, label_embedding), -1)
        validity = self.model(d_input)
        return validity

# Model oluşturma
generator = Generator().to(device)
discriminator = Discriminator().to(device)

# Loss ve optimizer
adversarial_loss = nn.BCELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=lr)
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)

# Klasör oluştur
os.makedirs('generated_images', exist_ok=True)

# Eğitim
print("\n🔥 7Gen Eğitimi Başlıyor...")

for epoch in range(num_epochs):
    for i, (imgs, labels) in enumerate(tqdm(dataloader, desc=f"Epoch {epoch+1}/{num_epochs}")):
        imgs = imgs.to(device)
        labels = labels.to(device)
        batch_size = imgs.size(0)
        
        # Ground truth'lar
        valid = torch.ones(batch_size, 1).to(device)
        fake = torch.zeros(batch_size, 1).to(device)
        
        # Generator eğitimi
        optimizer_G.zero_grad()
        z = torch.randn(batch_size, latent_dim).to(device)
        gen_labels = torch.randint(0, num_classes, (batch_size,)).to(device)
        gen_imgs = generator(z, gen_labels)
        
        g_loss = adversarial_loss(discriminator(gen_imgs, gen_labels), valid)
        g_loss.backward()
        optimizer_G.step()
        
        # Discriminator eğitimi
        optimizer_D.zero_grad()
        real_loss = adversarial_loss(discriminator(imgs, labels), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach(), gen_labels), fake)
        d_loss = (real_loss + fake_loss) / 2
        
        d_loss.backward()
        optimizer_D.step()
    
    print(f"Epoch {epoch+1}/{num_epochs} - D loss: {d_loss:.4f}, G loss: {g_loss:.4f}")
    
    # Her 10 epoch'ta örnek üret
    if (epoch + 1) % 10 == 0:
        with torch.no_grad():
            z = torch.randn(100, latent_dim).to(device)
            labels = torch.tensor([i for i in range(10) for _ in range(10)]).to(device)
            gen_imgs = generator(z, labels)
            gen_imgs = (gen_imgs + 1) / 2
            
            fig, axes = plt.subplots(10, 10, figsize=(10, 10))
            for i in range(10):
                for j in range(10):
                    idx = i * 10 + j
                    axes[i, j].imshow(gen_imgs[idx][0].cpu().numpy(), cmap='gray')
                    axes[i, j].axis('off')
            plt.savefig(f'generated_images/7gen_epoch_{epoch+1}.png')
            plt.close()

# Model kaydetme
os.makedirs('models', exist_ok=True)
torch.save(generator.state_dict(), 'models/7gen_generator.pth')
torch.save(discriminator.state_dict(), 'models/7gen_discriminator.pth')

print("\n✅ 7Gen eğitimi tamamlandı!")

# Kullanım örneği
def generate_digit(digit, num_samples=5):
    generator.eval()
    with torch.no_grad():
        z = torch.randn(num_samples, latent_dim).to(device)
        labels = torch.full((num_samples,), digit).to(device)
        gen_imgs = generator(z, labels)
        gen_imgs = (gen_imgs + 1) / 2
        
        plt.figure(figsize=(10, 2))
        for i in range(num_samples):
            plt.subplot(1, num_samples, i+1)
            plt.imshow(gen_imgs[i][0].cpu().numpy(), cmap='gray')
            plt.axis('off')
        plt.savefig(f'generated_images/digit_{digit}_samples.png')
        plt.show()

# Test et
print("\n🎯 Test örnekleri üretiliyor...")
for digit in range(10):
    generate_digit(digit, num_samples=5)

print("\n🎉 7Gen hazır! generated_images klasörüne bak.")