File size: 7,121 Bytes
5a3f083 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import 'dart:io';
import 'dart:typed_data';
import 'dart:ui' as ui;
import 'package:flutter/services.dart';
import 'package:flutter_pytorch_lite/flutter_pytorch_lite.dart';
class PlantAnomalyDetector {
Module? _module;
static const double _threshold = 0.5687; // Your threshold from training
// Normalization values from your training data
static const List<double> _mean = [0.4682, 0.4865, 0.3050];
static const List<double> _std = [0.2064, 0.1995, 0.1961];
/// Initialize the model from assets
Future<void> loadModel() async {
try {
// Load model from assets
final filePath = '${Directory.systemTemp.path}/plant_anomaly_detector.ptl';
final modelBytes = await _getBuffer('assets/models/plant_anomaly_detector.ptl');
File(filePath).writeAsBytesSync(modelBytes);
_module = await FlutterPytorchLite.load(filePath);
print('Model loaded successfully');
} catch (e) {
print('Error loading model: $e');
rethrow;
}
}
/// Get byte buffer from assets
static Future<Uint8List> _getBuffer(String assetFileName) async {
ByteData rawAssetFile = await rootBundle.load(assetFileName);
final rawBytes = rawAssetFile.buffer.asUint8List();
return rawBytes;
}
/// Normalize tensor values using training statistics
List<double> _normalize(List<double> input) {
List<double> normalized = [];
int channels = 3;
int pixelsPerChannel = input.length ~/ channels;
for (int c = 0; c < channels; c++) {
for (int i = 0; i < pixelsPerChannel; i++) {
int idx = c * pixelsPerChannel + i;
double normalizedValue = (input[idx] - _mean[c]) / _std[c];
normalized.add(normalizedValue);
}
}
return normalized;
}
/// Calculate reconstruction error (MSE) between original and reconstructed
double _calculateReconstructionError(List<double> original, List<double> reconstructed) {
if (original.length != reconstructed.length) {
throw ArgumentError('Original and reconstructed tensors must have same length');
}
double sumSquaredError = 0.0;
for (int i = 0; i < original.length; i++) {
double diff = original[i] - reconstructed[i];
sumSquaredError += diff * diff;
}
return sumSquaredError / original.length;
}
/// Detect if an image is a plant or anomaly
Future<PlantDetectionResult> detectPlant(ui.Image image) async {
if (_module == null) {
throw StateError('Model not loaded. Call loadModel() first.');
}
try {
// Convert image to tensor
final inputShape = Int64List.fromList([1, 3, 224, 224]);
Tensor inputTensor = await TensorImageUtils.imageToFloat32Tensor(
image,
width: 224,
height: 224,
);
// Get original normalized values for reconstruction error calculation
List<double> originalValues = inputTensor.dataAsFloat32List;
List<double> normalizedOriginal = _normalize(originalValues);
// Forward pass through the model
IValue input = IValue.from(inputTensor);
IValue output = await _module!.forward([input]);
// Get reconstruction
Tensor reconstructionTensor = output.toTensor();
List<double> reconstruction = reconstructionTensor.dataAsFloat32List;
// Calculate reconstruction error
double reconstructionError = _calculateReconstructionError(
normalizedOriginal,
reconstruction
);
// Determine if it's an anomaly
bool isAnomaly = reconstructionError > _threshold;
double confidence = (reconstructionError - _threshold).abs() / _threshold;
return PlantDetectionResult(
isPlant: !isAnomaly,
reconstructionError: reconstructionError,
threshold: _threshold,
confidence: confidence,
);
} catch (e) {
print('Error during inference: $e');
rethrow;
}
}
/// Dispose the model
Future<void> dispose() async {
if (_module != null) {
await _module!.destroy();
_module = null;
}
}
}
/// Result class for plant detection
class PlantDetectionResult {
final bool isPlant;
final double reconstructionError;
final double threshold;
final double confidence;
PlantDetectionResult({
required this.isPlant,
required this.reconstructionError,
required this.threshold,
required this.confidence,
});
@override
String toString() {
return 'PlantDetectionResult('
'isPlant: $isPlant, '
'reconstructionError: ${reconstructionError.toStringAsFixed(4)}, '
'threshold: ${threshold.toStringAsFixed(4)}, '
'confidence: ${(confidence * 100).toStringAsFixed(2)}%'
')';
}
}
/// Example usage in a Flutter widget
class PlantDetectionWidget extends StatefulWidget {
@override
_PlantDetectionWidgetState createState() => _PlantDetectionWidgetState();
}
class _PlantDetectionWidgetState extends State<PlantDetectionWidget> {
final PlantAnomalyDetector _detector = PlantAnomalyDetector();
bool _isModelLoaded = false;
@override
void initState() {
super.initState();
_loadModel();
}
Future<void> _loadModel() async {
try {
await _detector.loadModel();
setState(() {
_isModelLoaded = true;
});
} catch (e) {
print('Failed to load model: $e');
}
}
Future<void> _detectFromAsset(String assetPath) async {
if (!_isModelLoaded) return;
try {
// Load image from assets
const assetImage = AssetImage('assets/images/test_plant.jpg');
final image = await TensorImageUtils.imageProviderToImage(assetImage);
// Run detection
final result = await _detector.detectPlant(image);
// Show result
print('Detection result: $result');
// You can update UI here with the result
showDialog(
context: context,
builder: (context) => AlertDialog(
title: Text(result.isPlant ? 'Plant Detected' : 'Anomaly Detected'),
content: Text(
'Reconstruction Error: ${result.reconstructionError.toStringAsFixed(4)}\n'
'Confidence: ${(result.confidence * 100).toStringAsFixed(2)}%'
),
actions: [
TextButton(
onPressed: () => Navigator.pop(context),
child: Text('OK'),
),
],
),
);
} catch (e) {
print('Error during detection: $e');
}
}
@override
void dispose() {
_detector.dispose();
super.dispose();
}
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(title: Text('Plant Anomaly Detection')),
body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: [
if (!_isModelLoaded)
CircularProgressIndicator()
else
ElevatedButton(
onPressed: () => _detectFromAsset('assets/images/test_plant.jpg'),
child: Text('Detect Plant'),
),
],
),
),
);
}
} |