Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: pytorch
|
| 3 |
+
tags:
|
| 4 |
+
- anomaly-detection
|
| 5 |
+
- autoencoder
|
| 6 |
+
- plant-detection
|
| 7 |
+
- computer-vision
|
| 8 |
+
- pytorch-lightning
|
| 9 |
+
datasets:
|
| 10 |
+
- custom-plant-dataset
|
| 11 |
+
metrics:
|
| 12 |
+
- reconstruction-error
|
| 13 |
+
- threshold-based-classification
|
| 14 |
+
pipeline_tag: image-classification
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# plant-detector
|
| 18 |
+
|
| 19 |
+
## Model Description
|
| 20 |
+
|
| 21 |
+
Convolutional Autoencoder for plant anomaly detection
|
| 22 |
+
|
| 23 |
+
This is a Convolutional Autoencoder (CAE) trained for plant anomaly detection. The model learns to reconstruct plant images and detects anomalies based on reconstruction error.
|
| 24 |
+
|
| 25 |
+
## Model Details
|
| 26 |
+
|
| 27 |
+
- **Model Type**: Convolutional Autoencoder
|
| 28 |
+
- **Framework**: PyTorch Lightning
|
| 29 |
+
- **Task**: Anomaly Detection / Plant Classification
|
| 30 |
+
- **Input**: RGB images (224x224)
|
| 31 |
+
- **Output**: Reconstruction + anomaly score
|
| 32 |
+
|
| 33 |
+
## Training Details
|
| 34 |
+
|
| 35 |
+
- **Architecture**: Encoder-Decoder with skip connections
|
| 36 |
+
- **Loss Function**: Mean Squared Error (MSE)
|
| 37 |
+
- **Optimizer**: AdamW
|
| 38 |
+
- **Learning Rate**: 0.0001
|
| 39 |
+
- **Batch Size**: 32
|
| 40 |
+
- **Epochs**: N/A
|
| 41 |
+
- **Dataset Size**: N/A images
|
| 42 |
+
|
| 43 |
+
## Performance Metrics
|
| 44 |
+
|
| 45 |
+
- **Validation Loss**: N/A
|
| 46 |
+
- **Threshold**: 0.5687
|
| 47 |
+
- **Mean Reconstruction Error**: N/A
|
| 48 |
+
- **Std Reconstruction Error**: N/A
|
| 49 |
+
- **Anomaly Rate**: N/A
|
| 50 |
+
|
| 51 |
+
## Normalization Statistics
|
| 52 |
+
|
| 53 |
+
The model expects input images to be normalized with:
|
| 54 |
+
- **Mean**: [0.4682, 0.4865, 0.3050]
|
| 55 |
+
- **Std**: [0.2064, 0.1995, 0.1961]
|
| 56 |
+
|
| 57 |
+
## Usage
|
| 58 |
+
|
| 59 |
+
### PyTorch Lightning Checkpoint
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
from annomallyDet.models.lit_models.lit_cae import LitCAE
|
| 63 |
+
|
| 64 |
+
# Load the model
|
| 65 |
+
model = LitCAE.load_from_checkpoint("plant_anomaly_detector.ckpt")
|
| 66 |
+
model.eval()
|
| 67 |
+
|
| 68 |
+
# Make prediction
|
| 69 |
+
reconstruction_error = model.get_reconstruction_error(input_tensor)
|
| 70 |
+
is_anomaly = reconstruction_error > 0.5687
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
### Mobile Deployment (TorchScript Lite)
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
import torch
|
| 77 |
+
|
| 78 |
+
# Load mobile model
|
| 79 |
+
model = torch.jit.load("plant_anomaly_detector.ptl")
|
| 80 |
+
reconstruction = model(input_tensor)
|
| 81 |
+
|
| 82 |
+
# Calculate reconstruction error
|
| 83 |
+
error = torch.mean((input_tensor - reconstruction) ** 2)
|
| 84 |
+
is_anomaly = error > 0.5687
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
### Flutter Integration
|
| 88 |
+
|
| 89 |
+
See the included `flutter_integration_example.dart` for complete Flutter app integration using `flutter_pytorch_lite`.
|
| 90 |
+
|
| 91 |
+
## Files Included
|
| 92 |
+
|
| 93 |
+
- `plant_anomaly_detector.ckpt`: PyTorch Lightning checkpoint
|
| 94 |
+
- `plant_anomaly_detector.ptl`: TorchScript Lite model for mobile deployment
|
| 95 |
+
- `config.json`: Model configuration and metadata
|
| 96 |
+
- `flutter_integration_example.dart`: Flutter integration example
|
| 97 |
+
- `normalization_stats.json`: Dataset normalization statistics
|
| 98 |
+
|
| 99 |
+
## Model Architecture
|
| 100 |
+
|
| 101 |
+
```
|
| 102 |
+
Input (3, 224, 224)
|
| 103 |
+
β
|
| 104 |
+
Encoder: Conv2d β BatchNorm β LeakyReLU β Dropout
|
| 105 |
+
[32, 64, 128, 256] channels
|
| 106 |
+
β
|
| 107 |
+
Latent Space (128 dimensions)
|
| 108 |
+
β
|
| 109 |
+
Decoder: ConvTranspose2d β BatchNorm β LeakyReLU β Dropout
|
| 110 |
+
[256, 128, 64, 32] channels
|
| 111 |
+
β
|
| 112 |
+
Output (3, 224, 224)
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
## Anomaly Detection Logic
|
| 116 |
+
|
| 117 |
+
1. **Training**: Model learns to reconstruct normal plant images
|
| 118 |
+
2. **Inference**: Calculate reconstruction error (MSE)
|
| 119 |
+
3. **Decision**: If error > threshold β Anomaly (not a plant)
|
| 120 |
+
4. **Confidence**: Distance from threshold indicates confidence
|
| 121 |
+
|
| 122 |
+
## Limitations
|
| 123 |
+
|
| 124 |
+
- Trained specifically on plant images
|
| 125 |
+
- Performance depends on similarity to training data
|
| 126 |
+
- May struggle with novel plant species not in training set
|
| 127 |
+
- Threshold may need adjustment for different use cases
|
| 128 |
+
|
| 129 |
+
## Citation
|
| 130 |
+
|
| 131 |
+
```bibtex
|
| 132 |
+
@misc{plant_anomaly_detector,
|
| 133 |
+
title={Plant Anomaly Detection using Convolutional Autoencoder},
|
| 134 |
+
author={Your Name},
|
| 135 |
+
year={2024},
|
| 136 |
+
howpublished={\url{https://huggingface.co/YOUR_USERNAME/plant-detector}},
|
| 137 |
+
}
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
## License
|
| 141 |
+
|
| 142 |
+
[Specify your license here]
|