Text Generation
Transformers
PyTorch
English
retnet
custom_code
syncdoth commited on
Commit
af3b01e
·
verified ·
1 Parent(s): 7110f83

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -0
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - EleutherAI/the_pile_deduplicated
5
+ language:
6
+ - en
7
+ ---
8
+
9
+ # Hybrid RetNet
10
+
11
+ This is a [RetNet](https://arxiv.org/abs/2307.08621) model, accompanying the paper [Cross-Architecture Transfer Learning for Linear-Cost Inference Transformers](https://arxiv.org/abs/2404.02684v1),
12
+ In this work, we proposed to *not* train new Linear-Cost Inference models (e.g. RetNet) from scratch, but to transfer shared weight components from other PTLMs.
13
+ The model's input/output embeddings, MLP weights, Layer Norms, Attention Output Projections ($W_O$) has been transferred from [pythia-1B](https://huggingface.co/EleutherAI/pythia-410m). For more detail, please refer to the paper.
14
+
15
+ ## Model Details
16
+
17
+ ### Model Description
18
+
19
+ - **Developed by:** NucleusAI, Sehyun Choi
20
+ - **Model type:** RetNet & Transformer Hybrid
21
+
22
+ ### Model Sources
23
+
24
+ - **Repository:** [lit_llm_train](https://github.com/syncdoth/lit_llm_train)
25
+ - **Paper:** [Cross-Architecture Transfer Learning for Linear-Cost Inference Transformers](https://arxiv.org/abs/2404.02684v1)
26
+
27
+
28
+ ## How to Get Started with the Model
29
+
30
+ Use the code below to get started with the model.
31
+
32
+ ```python
33
+ import torch
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer
35
+
36
+ torch.set_default_device("cuda")
37
+
38
+ model = AutoModelForCausalLM.from_pretrained("NucleusAI/RetNet-410m-XATL", torch_dtype="auto", trust_remote_code=True)
39
+ tokenizer = AutoTokenizer.from_pretrained("NucleusAI/RetNet-410m-XATL", trust_remote_code=True) # same as EleutherAI/pythia-1B
40
+
41
+ inputs = tokenizer("Hi there!", return_tensors="pt", return_attention_mask=False)
42
+
43
+ outputs = model.generate(**inputs, max_length=200)
44
+ text = tokenizer.batch_decode(outputs)[0]
45
+ print(text)
46
+ ```
47
+
48
+ ## Training Data
49
+
50
+ The model has been trained with [pile_dedup](EleutherAI/the_pile_deduplicated) dataset, in favor of comparison with the same sized pythia models.