File size: 11,033 Bytes
6340080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# pip install minigrid
from typing import Union, Tuple, Dict, List, Optional
from multiprocessing import Process
import multiprocessing as mp
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import minigrid
import gymnasium as gym
from torch.optim.lr_scheduler import ExponentialLR, MultiStepLR
from tensorboardX import SummaryWriter
from minigrid.wrappers import FlatObsWrapper

random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
if torch.cuda.is_available():
    device = torch.device("cuda:0")
else:
    device = torch.device("cpu")

train_config = dict(
    train_iter=1024,
    train_data_count=128,
    test_data_count=4096,
)

little_RND_net_config = dict(
    exp_name="little_rnd_network",
    observation_shape=2835,
    hidden_size_list=[32, 16],
    learning_rate=1e-3,
    batch_size=64,
    update_per_collect=100,
    obs_norm=True,
    obs_norm_clamp_min=-1,
    obs_norm_clamp_max=1,
    reward_mse_ratio=1e5,
)

small_RND_net_config = dict(
    exp_name="small_rnd_network",
    observation_shape=2835,
    hidden_size_list=[64, 64],
    learning_rate=1e-3,
    batch_size=64,
    update_per_collect=100,
    obs_norm=True,
    obs_norm_clamp_min=-1,
    obs_norm_clamp_max=1,
    reward_mse_ratio=1e5,
)

standard_RND_net_config = dict(
    exp_name="standard_rnd_network",
    observation_shape=2835,
    hidden_size_list=[128, 64],
    learning_rate=1e-3,
    batch_size=64,
    update_per_collect=100,
    obs_norm=True,
    obs_norm_clamp_min=-1,
    obs_norm_clamp_max=1,
    reward_mse_ratio=1e5,
)

large_RND_net_config = dict(
    exp_name="large_RND_network",
    observation_shape=2835,
    hidden_size_list=[256, 256],
    learning_rate=1e-3,
    batch_size=64,
    update_per_collect=100,
    obs_norm=True,
    obs_norm_clamp_min=-1,
    obs_norm_clamp_max=1,
    reward_mse_ratio=1e5,
)

very_large_RND_net_config = dict(
    exp_name="very_large_RND_network",
    observation_shape=2835,
    hidden_size_list=[512, 512],
    learning_rate=1e-3,
    batch_size=64,
    update_per_collect=100,
    obs_norm=True,
    obs_norm_clamp_min=-1,
    obs_norm_clamp_max=1,
    reward_mse_ratio=1e5,
)

class FCEncoder(nn.Module):
    def __init__(
            self,
            obs_shape: int,
            hidden_size_list,
            activation: Optional[nn.Module] = nn.ReLU(),
    ) -> None:
        super(FCEncoder, self).__init__()
        self.obs_shape = obs_shape
        self.act = activation
        self.init = nn.Linear(obs_shape, hidden_size_list[0])

        layers = []
        for i in range(len(hidden_size_list) - 1):
            layers.append(nn.Linear(hidden_size_list[i], hidden_size_list[i + 1]))
            layers.append(self.act)
        self.main = nn.Sequential(*layers)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.act(self.init(x))
        x = self.main(x)
        return x

class RndNetwork(nn.Module):
    def __init__(self, obs_shape: Union[int, list], hidden_size_list: list) -> None:
        super(RndNetwork, self).__init__()
        self.target = FCEncoder(obs_shape, hidden_size_list)
        self.predictor = FCEncoder(obs_shape, hidden_size_list)

        for param in self.target.parameters():
            param.requires_grad = False

    def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        predict_feature = self.predictor(obs)
        with torch.no_grad():
            target_feature = self.target(obs)
        return predict_feature, target_feature

class RunningMeanStd(object):
    def __init__(self, epsilon=1e-4, shape=(), device=torch.device('cpu')):
        self._epsilon = epsilon
        self._shape = shape
        self._device = device
        self.reset()

    def update(self, x):
        batch_mean = np.mean(x, axis=0)
        batch_var = np.var(x, axis=0)
        batch_count = x.shape[0]

        new_count = batch_count + self._count
        mean_delta = batch_mean - self._mean
        new_mean = self._mean + mean_delta * batch_count / new_count
        # this method for calculating new variable might be numerically unstable
        m_a = self._var * self._count
        m_b = batch_var * batch_count
        m2 = m_a + m_b + np.square(mean_delta) * self._count * batch_count / new_count
        new_var = m2 / new_count
        self._mean = new_mean
        self._var = new_var
        self._count = new_count

    def reset(self):
        if len(self._shape) > 0:
            self._mean = np.zeros(self._shape, 'float32')
            self._var = np.ones(self._shape, 'float32')
        else:
            self._mean, self._var = 0., 1.
        self._count = self._epsilon

    @property
    def mean(self) -> np.ndarray:
        if np.isscalar(self._mean):
            return self._mean
        else:
            return torch.FloatTensor(self._mean).to(self._device)

    @property
    def std(self) -> np.ndarray:
        std = np.sqrt(self._var + 1e-8)
        if np.isscalar(std):
            return std
        else:
            return torch.FloatTensor(std).to(self._device)

class RndRewardModel():

    def __init__(self, config) -> None:  # noqa
        super(RndRewardModel, self).__init__()
        self.cfg = config

        self.tb_logger = SummaryWriter(config["exp_name"])
        self.reward_model = RndNetwork(
            obs_shape=config["observation_shape"], hidden_size_list=config["hidden_size_list"]
        ).to(device)

        self.opt = optim.Adam(self.reward_model.predictor.parameters(), config["learning_rate"])
        self.scheduler = ExponentialLR(self.opt, gamma=0.997)

        self.estimate_cnt_rnd = 0
        if self.cfg["obs_norm"]:
            self._running_mean_std_rnd_obs = RunningMeanStd(epsilon=1e-4, device=device)

    def __del__(self):
        self.tb_logger.flush()
        self.tb_logger.close()

    def train(self, data) -> None:
        for _ in range(self.cfg["update_per_collect"]):
            train_data: list = random.sample(data, self.cfg["batch_size"])
            train_data: torch.Tensor = torch.stack(train_data).to(device)
            if self.cfg["obs_norm"]:
                # Note: observation normalization: transform obs to mean 0, std 1
                self._running_mean_std_rnd_obs.update(train_data.cpu().numpy())
                train_data = (train_data - self._running_mean_std_rnd_obs.mean) / self._running_mean_std_rnd_obs.std
                train_data = torch.clamp(
                    train_data, min=self.cfg["obs_norm_clamp_min"], max=self.cfg["obs_norm_clamp_max"]
                )

            predict_feature, target_feature = self.reward_model(train_data)
            loss = F.mse_loss(predict_feature, target_feature.detach())
            self.opt.zero_grad()
            loss.backward()
            self.opt.step()
        self.scheduler.step()

    def estimate(self, data: list) -> List[Dict]:
        """
        estimate the rnd intrinsic reward
        """

        obs = torch.stack(data).to(device)
        if self.cfg["obs_norm"]:
            # Note: observation normalization: transform obs to mean 0, std 1
            obs = (obs - self._running_mean_std_rnd_obs.mean) / self._running_mean_std_rnd_obs.std
            obs = torch.clamp(obs, min=self.cfg["obs_norm_clamp_min"], max=self.cfg["obs_norm_clamp_max"])

        with torch.no_grad():
            self.estimate_cnt_rnd += 1
            predict_feature, target_feature = self.reward_model(obs)
            mse = F.mse_loss(predict_feature, target_feature, reduction='none').mean(dim=1)
            self.tb_logger.add_scalar('rnd_reward/mse', mse.cpu().numpy().mean(), self.estimate_cnt_rnd)

            # Note: according to the min-max normalization, transform rnd reward to [0,1]
            rnd_reward = mse * self.cfg["reward_mse_ratio"]  #(mse - mse.min()) / (mse.max() - mse.min() + 1e-11)

            self.tb_logger.add_scalar('rnd_reward/rnd_reward_max', rnd_reward.max(), self.estimate_cnt_rnd)
            self.tb_logger.add_scalar('rnd_reward/rnd_reward_mean', rnd_reward.mean(), self.estimate_cnt_rnd)
            self.tb_logger.add_scalar('rnd_reward/rnd_reward_min', rnd_reward.min(), self.estimate_cnt_rnd)

            rnd_reward = torch.chunk(rnd_reward, rnd_reward.shape[0], dim=0)

def training(config, train_data, test_data):
    rnd_reward_model = RndRewardModel(config=config)
    for i in range(train_config["train_iter"]):
        rnd_reward_model.train([torch.Tensor(item["last_observation"]) for item in train_data[i]])
        rnd_reward_model.estimate([torch.Tensor(item["last_observation"]) for item in test_data])

def main():
    env = gym.make("MiniGrid-Empty-8x8-v0")
    env_obs = FlatObsWrapper(env)

    train_data = []
    test_data = []

    for i in range(train_config["train_iter"]):

        train_data_per_iter = []

        while len(train_data_per_iter) < train_config["train_data_count"]:
            last_observation, _ = env_obs.reset()
            terminated = False
            while terminated != True and len(train_data_per_iter) < train_config["train_data_count"]:
                action = env_obs.action_space.sample()
                observation, reward, terminated, truncated, info = env_obs.step(action)
                train_data_per_iter.append(
                    {
                        "last_observation": last_observation,
                        "action": action,
                        "reward": reward,
                        "observation": observation
                    }
                )
                last_observation = observation
            env_obs.close()

        train_data.append(train_data_per_iter)

    while len(test_data) < train_config["test_data_count"]:
        last_observation, _ = env_obs.reset()
        terminated = False
        while terminated != True and len(train_data_per_iter) < train_config["test_data_count"]:
            action = env_obs.action_space.sample()
            observation, reward, terminated, truncated, info = env_obs.step(action)
            test_data.append(
                {
                    "last_observation": last_observation,
                    "action": action,
                    "reward": reward,
                    "observation": observation
                }
            )
            last_observation = observation
        env_obs.close()

    p0 = Process(target=training, args=(little_RND_net_config, train_data, test_data))
    p0.start()

    p1 = Process(target=training, args=(small_RND_net_config, train_data, test_data))
    p1.start()

    p2 = Process(target=training, args=(standard_RND_net_config, train_data, test_data))
    p2.start()

    p3 = Process(target=training, args=(large_RND_net_config, train_data, test_data))
    p3.start()

    p4 = Process(target=training, args=(very_large_RND_net_config, train_data, test_data))
    p4.start()

    p0.join()
    p1.join()
    p2.join()
    p3.join()
    p4.join()

if __name__ == "__main__":
    mp.set_start_method('spawn')
    main()