File size: 1,611 Bytes
6d7b948 ea93da4 d2b97e1 f15bafb d2b97e1 a8404fb d2b97e1 a8404fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: apache-2.0
language:
- en
- zh
base_model:
- ByteDance-Seed/UI-TARS-7B-DPO
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- multimodal
- gui
---
# ZeroGUI-OSWorld-7B
[\[๐ Paper\]](https://arxiv.org/abs/2505.23762)
[\[๐ GitHub\]](https://github.com/OpenGVLab/ZeroGUI)
## Introduction
We propose **ZeroGUI**, a fully automated online reinforcement learning framework that enables GUI agents to train and adapt in interactive environments at zero human cost.
* **Automatic Task Generation:** Automatically proposes diverse, executable GUI tasks.
* **Automatic Reward Estimation:** Assigns binary task rewards based on trajectory screenshots and employs a voting mechanism to avoid hallucinated success.
* **Two-Stage Online RL:** Combines training on generated tasks and test-time adaptation to continually improve agent's performance.

## Results

## Citation
If you find this work helpful in your research, please consider citing:
```bibtex
@article{yang2025zerogui,
title={ZeroGUI: Automating Online GUI Learning at Zero Human Cost},
author={Yang, Chenyu and Shiqian, Su and Liu, Shi and Dong, Xuan and Yu, Yue and Su, Weijie and Wang, Xuehui and Liu, Zhaoyang and Zhu, Jinguo and Li, Hao and Wang, Wenhai and Qiao, Yu and Zhu, Xizhou and Dai, Jifeng},
journal={arXiv preprint arXiv:2505.23762},
year={2025}
}
```
|