--- license: mit language: - en license_link: https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE base_model: - BAAI/bge-reranker-base --- # bge-reranker-base-int8-ov > [!WARNING] > **Disclaimer**: This model is provided for evaluation purposes only. Performance, accuracy, and stability may vary. Use at your own discretion. * Model creator: [BAAI](https://huggingface.co/BAAI) * Original model: [bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) ## Description This is [bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with quantization to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters The quantization was performed using the next code: ``` from functools import partial from transformers import AutoTokenizer from optimum.intel import OVConfig, OVModelForSequenceClassification, OVQuantizationConfig, OVQuantizer MODEL_ID = "OpenVINO/bge-reranker-base-fp16-ov" base_model_path = "bge-reranker-base-fp16-ov" int8_ptq_model_path = "bge-reranker-base-int8" model = OVModelForSequenceClassification.from_pretrained(MODEL_ID) model.save_pretrained(base_model_path) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) tokenizer.save_pretrained(base_model_path) quantizer = OVQuantizer.from_pretrained(model) def preprocess_function(examples, tokenizer): return tokenizer(examples["sentence"], padding="max_length", max_length=384, truncation=True) calibration_dataset = quantizer.get_calibration_dataset( "glue", dataset_config_name="sst2", preprocess_function=partial(preprocess_function, tokenizer=tokenizer), num_samples=300, dataset_split="train", ) ov_config = OVConfig(quantization_config=OVQuantizationConfig()) quantizer.quantize(ov_config=ov_config, calibration_dataset=calibration_dataset, save_directory=int8_ptq_model_path) tokenizer.save_pretrained(int8_ptq_model_path) ``` For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/quantizing-models-post-training.html). ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2025.1.0 and higher * Optimum Intel 1.24.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel import OVModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('OpenVINO/bge-reranker-base-int8-ov') model = OVModelForSequenceClassification.from_pretrained('OpenVINO/bge-reranker-base-int8-ov') pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html). You can find more detailed usage examples in OpenVINO Notebooks: - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system) ## Limitations Check the original [model card](https://huggingface.co/BAAI/bge-reranker-base) for limitations. ## Legal information The original model is distributed under [MIT](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE) license. More details can be found in [bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.