Tingquan commited on
Commit
27a1ed0
·
verified ·
1 Parent(s): e67d101

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +128 -0
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # PP-DocLayout_plus-L
6
+
7
+ ## Introduction
8
+
9
+ A higher-precision layout area localization model trained on a self-built dataset containing Chinese and English papers, PPT, multi-layout magazines, contracts, books, exams, ancient books and research reports using RT-DETR-L. The layout detection model includes 20 common categories: document title, paragraph title, text, page number, abstract, table, references, footnotes, header, footer, algorithm, formula, formula number, image, table, seal, figure_table title, chart, and sidebar text and lists of references. The key metrics are as follow:
10
+
11
+ | Model| mAP(0.5) (%) |
12
+ | --- | --- |
13
+ |PP-DocLayout_plus-L | 83.2 |
14
+
15
+ **Note**: the evaluation set of the above precision indicators is the self built version sub area detection data set, including Chinese and English papers, magazines, newspapers, research reports PPT、 1000 document type pictures such as test papers and textbooks.
16
+
17
+
18
+ ## Quick Start
19
+
20
+ ### Installation
21
+
22
+ 1. PaddlePaddle
23
+
24
+ Please refer to the following commands to install PaddlePaddle using pip:
25
+
26
+ ```bash
27
+ # for CUDA11.8
28
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
29
+
30
+ # for CUDA12.6
31
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
32
+
33
+ # for CPU
34
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
35
+ ```
36
+
37
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
38
+
39
+ 2. PaddleOCR
40
+
41
+ Install the latest version of the PaddleOCR inference package from PyPI:
42
+
43
+ ```bash
44
+ python -m pip install paddleocr
45
+ ```
46
+
47
+
48
+ ### Model Usage
49
+
50
+ You can quickly experience the functionality with a single command:
51
+
52
+ ```bash
53
+ paddleocr layout_detection \
54
+ --model_name PP-DocLayout_plus-L \
55
+ -i https://cdn-uploads.huggingface.co/production/uploads/63d7b8ee07cd1aa3c49a2026/N5C68HPVAI-xQAWTxpbA6.jpeg
56
+ ```
57
+
58
+ You can also integrate the model inference of the layout detection module into your project. Before running the following code, please download the sample image to your local machine.
59
+
60
+ ```python
61
+ from paddleocr import LayoutDetection
62
+
63
+ model = LayoutDetection(model_name="PP-DocLayout_plus-L")
64
+ output = model.predict("N5C68HPVAI-xQAWTxpbA6.jpeg", batch_size=1, layout_nms=True)
65
+ for res in output:
66
+ res.print()
67
+ res.save_to_img(save_path="./output/")
68
+ res.save_to_json(save_path="./output/res.json")
69
+ ```
70
+
71
+ After running, the obtained result is as follows:
72
+
73
+ ```json
74
+ {'res': {'input_path': '/root/.paddlex/predict_input/N5C68HPVAI-xQAWTxpbA6.jpeg', 'page_index': None, 'boxes': [{'cls_id': 2, 'label': 'text', 'score': 0.9870168566703796, 'coordinate': [34.101395, 349.85275, 358.5929, 611.0788]}, {'cls_id': 2, 'label': 'text', 'score': 0.986599326133728, 'coordinate': [34.500305, 647.15753, 358.29437, 848.66925]}, {'cls_id': 2, 'label': 'text', 'score': 0.984662652015686, 'coordinate': [385.71417, 497.41037, 711.22656, 697.8426]}, {'cls_id': 8, 'label': 'table', 'score': 0.9841272234916687, 'coordinate': [73.76732, 105.94854, 321.95355, 298.85074]}, {'cls_id': 8, 'label': 'table', 'score': 0.983431875705719, 'coordinate': [436.95523, 105.81446, 662.71814, 313.4865]}, {'cls_id': 2, 'label': 'text', 'score': 0.9832285642623901, 'coordinate': [385.62766, 346.22888, 710.10205, 458.772]}, {'cls_id': 2, 'label': 'text', 'score': 0.9816107749938965, 'coordinate': [385.78085, 735.19293, 710.5613, 849.97656]}, {'cls_id': 6, 'label': 'figure_title', 'score': 0.9577467441558838, 'coordinate': [34.421764, 20.055021, 358.7124, 76.53721]}, {'cls_id': 6, 'label': 'figure_title', 'score': 0.9505674839019775, 'coordinate': [385.7235, 20.054104, 711.2928, 74.92819]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.9001894593238831, 'coordinate': [386.46353, 477.035, 699.4023, 490.07495]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.8846081495285034, 'coordinate': [35.413055, 627.7365, 185.58315, 640.522]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.8837621808052063, 'coordinate': [387.1759, 716.34235, 524.78345, 729.2588]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.8509567975997925, 'coordinate': [35.50049, 331.18472, 141.64497, 344.81168]}]}}
75
+ ```
76
+
77
+ The visualized image is as follows:
78
+
79
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63d7b8ee07cd1aa3c49a2026/5gAq1cFy1IX_wX26C2XmM.jpeg)
80
+
81
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/layout_detection.html#iii-quick-integration).
82
+
83
+ ### Pipeline Usage
84
+
85
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
86
+
87
+ #### PP-StructureV3
88
+
89
+ Layout analysis is a technique used to extract structured information from document images. PP-StructureV3 includes the following six modules:
90
+ * Layout Detection Module
91
+ * General OCR Sub-pipeline
92
+ * Document Image Preprocessing Sub-pipeline (Optional)
93
+ * Table Recognition Sub-pipeline (Optional)
94
+ * Seal Recognition Sub-pipeline (Optional)
95
+ * Formula Recognition Sub-pipeline (Optional)
96
+
97
+ You can quickly experience the PP-StructureV3 pipeline with a single command.
98
+
99
+ ```bash
100
+ paddleocr pp_structurev3 -i https://cdn-uploads.huggingface.co/production/uploads/63d7b8ee07cd1aa3c49a2026/KP10tiSZfAjMuwZUSLtRp.png
101
+ ```
102
+
103
+ You can experience the inference of the pipeline with just a few lines of code. Taking the PP-StructureV3 pipeline as an example:
104
+
105
+ ```python
106
+ from paddleocr import PPStructureV3
107
+
108
+ pipeline = PPStructureV3()
109
+ # ocr = PPStructureV3(use_doc_orientation_classify=True) # Use use_doc_orientation_classify to enable/disable document orientation classification model
110
+ # ocr = PPStructureV3(use_doc_unwarping=True) # Use use_doc_unwarping to enable/disable document unwarping module
111
+ # ocr = PPStructureV3(use_textline_orientation=True) # Use use_textline_orientation to enable/disable textline orientation classification model
112
+ # ocr = PPStructureV3(device="gpu") # Use device to specify GPU for model inference
113
+ output = pipeline.predict("./KP10tiSZfAjMuwZUSLtRp.png")
114
+ for res in output:
115
+ res.print() ## Print the structured prediction output
116
+ res.save_to_json(save_path="output") ## Save the current image's structured result in JSON format
117
+ res.save_to_markdown(save_path="output") ## Save the current image's result in Markdown format
118
+ ```
119
+
120
+ The default model used in pipeline is `PP-DocLayout_plus-L`.
121
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/PP-StructureV3.html#2-quick-start).
122
+
123
+ ## Links
124
+
125
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
126
+
127
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
128
+