Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# PP-OCRv4_mobile_det
|
6 |
+
|
7 |
+
## Introduction
|
8 |
+
|
9 |
+
PP-OCRv4_mobile_det is one of the PP-OCRv4_det series models, a set of text detection models developed by the PaddleOCR team. This mobile-optimized text detection model offers higher efficiency, making it ideal for deployment on edge devices. Its key accuracy metrics are as follows:
|
10 |
+
|
11 |
+
| Handwritten Chinese | Handwritten English | Printed Chinese | Printed English | Traditional Chinese | Ancient Text | Japanese | General Scenario | Pinyin | Rotation | Distortion | Artistic Text | Average |
|
12 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
13 |
+
| 0.583 | 0.369 | 0.872 | 0.773 | 0.663 | 0.231 | 0.634 | 0.710 | 0.430 | 0.299 | 0.715 | 0.549 | 0.624 |
|
14 |
+
|
15 |
+
## Quick Start
|
16 |
+
|
17 |
+
### Installation
|
18 |
+
|
19 |
+
1. PaddlePaddle
|
20 |
+
|
21 |
+
Please refer to the following commands to install PaddlePaddle using pip:
|
22 |
+
|
23 |
+
```bash
|
24 |
+
# for CUDA11.8
|
25 |
+
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
|
26 |
+
|
27 |
+
# for CUDA12.6
|
28 |
+
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
29 |
+
|
30 |
+
# for CPU
|
31 |
+
python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
|
32 |
+
```
|
33 |
+
|
34 |
+
For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
|
35 |
+
|
36 |
+
2. PaddleOCR
|
37 |
+
|
38 |
+
Install the latest version of the PaddleOCR inference package from PyPI:
|
39 |
+
|
40 |
+
```bash
|
41 |
+
python -m pip install paddleocr
|
42 |
+
```
|
43 |
+
|
44 |
+
### Model Usage
|
45 |
+
|
46 |
+
You can quickly experience the functionality with a single command:
|
47 |
+
|
48 |
+
```bash
|
49 |
+
paddleocr text_detection \
|
50 |
+
--model_name PP-OCRv4_mobile_det \
|
51 |
+
-i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/3ul2Rq4Sk5Cn-l69D695U.png
|
52 |
+
```
|
53 |
+
|
54 |
+
You can also integrate the model inference of the text detection module into your project. Before running the following code, please download the sample image to your local machine.
|
55 |
+
|
56 |
+
```python
|
57 |
+
from paddleocr import TextDetection
|
58 |
+
model = TextDetection(model_name="PP-OCRv4_mobile_det")
|
59 |
+
output = model.predict(input="3ul2Rq4Sk5Cn-l69D695U.png", batch_size=1)
|
60 |
+
for res in output:
|
61 |
+
res.print()
|
62 |
+
res.save_to_img(save_path="./output/")
|
63 |
+
res.save_to_json(save_path="./output/res.json")
|
64 |
+
```
|
65 |
+
|
66 |
+
After running, the obtained result is as follows:
|
67 |
+
|
68 |
+
```json
|
69 |
+
{'res': {'input_path': '/root/.paddlex/predict_input/3ul2Rq4Sk5Cn-l69D695U.png', 'page_index': None, 'dt_polys': array([[[ 637, 1432],
|
70 |
+
...,
|
71 |
+
[ 637, 1454]],
|
72 |
+
|
73 |
+
...,
|
74 |
+
|
75 |
+
[[ 356, 107],
|
76 |
+
...,
|
77 |
+
[ 356, 130]]], dtype=int16), 'dt_scores': [0.8305358711080322, 0.6912752452425651, ..., 0.848925772091929]}}
|
78 |
+
```
|
79 |
+
|
80 |
+
The visualized image is as follows:
|
81 |
+
|
82 |
+

|
83 |
+
|
84 |
+
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_detection.html#iii-quick-start).
|
85 |
+
|
86 |
+
### Pipeline Usage
|
87 |
+
|
88 |
+
The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
|
89 |
+
|
90 |
+
#### PP-OCRv4
|
91 |
+
|
92 |
+
The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in text form. And there are 5 modules in the pipeline:
|
93 |
+
* Document Image Orientation Classification Module (Optional)
|
94 |
+
* Text Image Unwarping Module (Optional)
|
95 |
+
* Text Line Orientation Classification Module (Optional)
|
96 |
+
* Text Detection Module
|
97 |
+
* Text Recognition Module
|
98 |
+
|
99 |
+
Run a single command to quickly experience the OCR pipeline:
|
100 |
+
|
101 |
+
```bash
|
102 |
+
paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/3ul2Rq4Sk5Cn-l69D695U.png \
|
103 |
+
--text_detection_model_name PP-OCRv4_mobile_det \
|
104 |
+
--text_recognition_model_name PP-OCRv4_mobile_rec \
|
105 |
+
--use_doc_orientation_classify False \
|
106 |
+
--use_doc_unwarping False \
|
107 |
+
--use_textline_orientation False \
|
108 |
+
--save_path ./output \
|
109 |
+
--device gpu:0
|
110 |
+
```
|
111 |
+
|
112 |
+
Results are printed to the terminal:
|
113 |
+
|
114 |
+
```json
|
115 |
+
{'res': {'input_path': '/root/.paddlex/predict_input/3ul2Rq4Sk5Cn-l69D695U.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': False}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 356, 105],
|
116 |
+
...,
|
117 |
+
[ 356, 129]],
|
118 |
+
|
119 |
+
...,
|
120 |
+
|
121 |
+
[[ 630, 1432],
|
122 |
+
...,
|
123 |
+
[ 630, 1451]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['AlgorithmsfortheMarkovEntropyDecomposition', 'AndrewJ.FerrisandDavidPoulin', 'DepartementdePhysique,UniversitedeSherbrooke,Quebec,J1K2R1,Canada', '(Dated:October 31,2018)', 'TheMarkoventropydecomposition(MED)isarecently-proposed,cluster-basedsimulationmethodforfi-', 'nite temperature quantum systems with arbitrary geometry. In this paper, we detail numerical algorithms for', 'performingtherequiredsteps oftheMED,principallysolvingaminimizationproblemwithapreconditioned', '2107', "Newton's algorithm, as well as how to extract global susceptibilities and thermal responses. We demonstrate", 'thepowerof themethodwiththespin-1/2XXZmodelonthe2Dsquarelattice,includingtheextractionof', 'criticalpointsanddetailsofeachphase.Althoughthemethodsharessomequalitativesimilaritieswithexact-', 'diagonalization,we show the MED is both more accurate and significantly more fexible', '', 'PACS numbers: 05.10.a, 02.50.Ng, 03.67.a, 74.40.Kb', '6', '1', 'INTRODUCTION', 'This approximation becomes exactin the case of a1Dquan', 'tum (or classical)Markov chain[10],and leads to an expo', 'g', 'Althoughtheequationsgoverningquantummany-body', 'nentialreduction of costfor exact entropy calculationswhen', 'C', 'systemsares', 'simpletowritedown,findingsolutionsforthe', 'theglobaldensitymatrixisahigher-dimensionalMarkovnet-', 'H', 'majorityof systems remainsincrediblydifficult.Modern', 'work state[12,13].', 'physicsfinds itself inneedof new tools tocompute theemer-', 'Thesecond approximationused intheMEDapproach is', 'gent behavioroflarge,many-body systems.', 'relatedtotheN-representibilityproblem.Givenasetoflo', '', 'T', 'Therehasbeen a greatvariety of tools developed totackle', 'calbut overlappingreduceddensitymatrices{pi},itis avery', 'many-body problems,but in general, large 2D and 3D quan-', 'challengingproblemtodetermineifthereexistsaglobalden', '1', 'tumsystemsremainhardtodealwith.N', 'Mostsystemsare', 'sityoperatorwhichispositivesemi-definiteandwhosepartial', 'thoughttobenon-integrable,soexactanalyticsolutionsare', 'trace agreeswitheachpi.This problemis QMA-hard(the', 'notusuallyexpected.Directnumericaldiagonalizationcanbe', 'quantum analogue of NP)[14,15],and is hopelessly diffi', 'performedforrelativelysmallsystems', 'howevertheemer', 'cult toenforce.Thus,the second approximationemployed', 'gentbehaviorofasysteminthethermodynamiclimitmaybe', 'involves ignoringglobal consistency with apositive opera', 'difficulttoextract,especiallyins', 'systemswithlargecorrelation', 'tor,whilerequiringlocal consistency on any overlappingre', 'lengths.MonteCarloapproachesaretechnicallyexact(upto', 'gionsbetweenthep.Atthezero-temperaturelimit,theMED', 'samplingerror),butsufferfromtheso-calledsignproblem', 'approachbecomesanalogoustothevariationalnth-orderre-', 'forfermionic,frustrated,or dynamical problems.Thus we are', 'duceddensitymatrix', 'approach,wherepositivityisenforced', 'limited to search for clever approximations to solve the ma-', 'on allreduceddensitymatricesofsizen[16-18].', 'jorityofmany-bodyproblems', 'TheMEDapproachisanextremelyflexibleclustermethod', 'Over thepastcentury,hundredsof suchapproximations', 'applicabletobothtranslationallyinvariantsystemsofanydi', 'havebeenproposed,andwewillmentionjustafewnotable', 'mensioninthethermodynamiclimit,aswellasfinitesystems', 'examplesapplicabletoquantumlatticemodels.Mean-field', 'or systems without translationalinvariance(e.g.disordered', 'theoryiss', 'simplea', 'andfrequentlyarrivesatthecorrectquali', 'lattices,orharmonicallyt', 'trappeda', 'atomsinopticallattices)', 'tativedescription,butoftenfailswhencorrelationsareim', 'The free energy given by MED is guaranteed to lower bound', 'portant. Density-matrix renormalisation group (DMRG)[1]', 'the true free energy,which in turn lower-bounds the ground', 'is efficient and extremely accurate atsolving1Dproblems', 'stateenergy—t', 'thusprovidinganaturalcomplementtovaria', 'butthecomputationalcostgrowsexponentiallywithsystem', 'tional approacheswhichupper-bound thegroundstateenergy', 'sizeintwo-or higher-dimensions[2,3].F', 'Relatedtensor', 'Theabilitytoprovidearigorousground-stateenergywindow', 'networktechniquesdesignedfor2Dsystemsarestillinthein', 'is apowerfulvalidation tool,creating avery compellingrea-', 'infancy[4-6].Series-expansionmethods[7]canbesuccess-', 'son tousethis approach', 'ful,but may diverge or otherwise converge slowly,obscuring', 'Inthispaperwepaperwepresent apedagogicalintroduc', 'thestateincertainregimes.', 'Thereexistavarietyofcluster', 'tiontoMED,includingnumericalimplementationissuesand', 'basedtechniques,suchasdynamical-mean-fieldtheory[8]', 'applicationsto2Dquantumlatticemodelsinthethermody', 'anddensity-matrixembedding[9]', 'namiclimit.In Sec.I', 'II,wegiveabrief', 'derivationofthe', 'Herewe discuss theso-calledMarkoventropydecompo-', 'Markoventropydecomposition.SectionII outlines arobust', 'sition(MED),recentlyproposed byPoulin&Hastings [10]', 'numericalstrategyfor optimizingtheclusters thatmakeup', '(and analogoustoaslightlyearlier classical algorithm[11])', 'thedecomposition.InSec.IVweshowhowwecanextend', 'Thisisaself-consistentclustermethodforfinite temperature', 'thesealgorithmstoextractnon-trivialinformation,suchas', 'systems that takes advantage of an approximation of the(von', 'specificheat andsusceptibilities.Wepresentan application of', 'Neumann)entropy.In[1o],it was shown that the entropy', 'themethod to the spin-1/2XXZmodelon a 2Dsquarelattice', 'persitecanberigorouslyupperboundedusingonlylocalin-', 'inSec.V,describinghowtocharacterizethephasediagram', 'formation—alocal,reduced density matrix on Nsites,say.', '', 'and determine criticalpoints,before concluding inSec.VI.'], 'rec_scores': array([0.9952876 , ..., 0.95561302]), 'rec_polys': array([[[ 356, 105],
|
124 |
+
...,
|
125 |
+
[ 356, 129]],
|
126 |
+
|
127 |
+
...,
|
128 |
+
|
129 |
+
[[ 630, 1432],
|
130 |
+
...,
|
131 |
+
[ 630, 1451]]], dtype=int16), 'rec_boxes': array([[ 356, ..., 130],
|
132 |
+
...,
|
133 |
+
[ 630, ..., 1451]], dtype=int16)}}
|
134 |
+
```
|
135 |
+
|
136 |
+
If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
|
137 |
+
|
138 |
+

|
139 |
+
|
140 |
+
The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
|
141 |
+
|
142 |
+
```python
|
143 |
+
from paddleocr import PaddleOCR
|
144 |
+
|
145 |
+
ocr = PaddleOCR(
|
146 |
+
text_detection_model_name="PP-OCRv4_mobile_det",
|
147 |
+
text_recognition_model_name="PP-OCRv4_mobile_rec",
|
148 |
+
use_doc_orientation_classify=False, # Disables document orientation classification model via this parameter
|
149 |
+
use_doc_unwarping=False, # Disables text image rectification model via this parameter
|
150 |
+
use_textline_orientation=False, # Disables text line orientation classification model via this parameter
|
151 |
+
)
|
152 |
+
result = ocr.predict("./3ul2Rq4Sk5Cn-l69D695U.png")
|
153 |
+
for res in result:
|
154 |
+
res.print()
|
155 |
+
res.save_to_img("output")
|
156 |
+
res.save_to_json("output")
|
157 |
+
```
|
158 |
+
|
159 |
+
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
|
160 |
+
|
161 |
+
|
162 |
+
## Links
|
163 |
+
|
164 |
+
[PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
|
165 |
+
|
166 |
+
[PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
|