Tingquan commited on
Commit
b201e35
·
verified ·
1 Parent(s): a2881ea

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +166 -0
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # PP-OCRv4_mobile_det
6
+
7
+ ## Introduction
8
+
9
+ PP-OCRv4_mobile_det is one of the PP-OCRv4_det series models, a set of text detection models developed by the PaddleOCR team. This mobile-optimized text detection model offers higher efficiency, making it ideal for deployment on edge devices. Its key accuracy metrics are as follows:
10
+
11
+ | Handwritten Chinese | Handwritten English | Printed Chinese | Printed English | Traditional Chinese | Ancient Text | Japanese | General Scenario | Pinyin | Rotation | Distortion | Artistic Text | Average |
12
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
13
+ | 0.583 | 0.369 | 0.872 | 0.773 | 0.663 | 0.231 | 0.634 | 0.710 | 0.430 | 0.299 | 0.715 | 0.549 | 0.624 |
14
+
15
+ ## Quick Start
16
+
17
+ ### Installation
18
+
19
+ 1. PaddlePaddle
20
+
21
+ Please refer to the following commands to install PaddlePaddle using pip:
22
+
23
+ ```bash
24
+ # for CUDA11.8
25
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
26
+
27
+ # for CUDA12.6
28
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
29
+
30
+ # for CPU
31
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
32
+ ```
33
+
34
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
35
+
36
+ 2. PaddleOCR
37
+
38
+ Install the latest version of the PaddleOCR inference package from PyPI:
39
+
40
+ ```bash
41
+ python -m pip install paddleocr
42
+ ```
43
+
44
+ ### Model Usage
45
+
46
+ You can quickly experience the functionality with a single command:
47
+
48
+ ```bash
49
+ paddleocr text_detection \
50
+ --model_name PP-OCRv4_mobile_det \
51
+ -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/3ul2Rq4Sk5Cn-l69D695U.png
52
+ ```
53
+
54
+ You can also integrate the model inference of the text detection module into your project. Before running the following code, please download the sample image to your local machine.
55
+
56
+ ```python
57
+ from paddleocr import TextDetection
58
+ model = TextDetection(model_name="PP-OCRv4_mobile_det")
59
+ output = model.predict(input="3ul2Rq4Sk5Cn-l69D695U.png", batch_size=1)
60
+ for res in output:
61
+ res.print()
62
+ res.save_to_img(save_path="./output/")
63
+ res.save_to_json(save_path="./output/res.json")
64
+ ```
65
+
66
+ After running, the obtained result is as follows:
67
+
68
+ ```json
69
+ {'res': {'input_path': '/root/.paddlex/predict_input/3ul2Rq4Sk5Cn-l69D695U.png', 'page_index': None, 'dt_polys': array([[[ 637, 1432],
70
+ ...,
71
+ [ 637, 1454]],
72
+
73
+ ...,
74
+
75
+ [[ 356, 107],
76
+ ...,
77
+ [ 356, 130]]], dtype=int16), 'dt_scores': [0.8305358711080322, 0.6912752452425651, ..., 0.848925772091929]}}
78
+ ```
79
+
80
+ The visualized image is as follows:
81
+
82
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/DnuBmbm8nDkuj_lLNS5fm.jpeg)
83
+
84
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_detection.html#iii-quick-start).
85
+
86
+ ### Pipeline Usage
87
+
88
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
89
+
90
+ #### PP-OCRv4
91
+
92
+ The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in text form. And there are 5 modules in the pipeline:
93
+ * Document Image Orientation Classification Module (Optional)
94
+ * Text Image Unwarping Module (Optional)
95
+ * Text Line Orientation Classification Module (Optional)
96
+ * Text Detection Module
97
+ * Text Recognition Module
98
+
99
+ Run a single command to quickly experience the OCR pipeline:
100
+
101
+ ```bash
102
+ paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/3ul2Rq4Sk5Cn-l69D695U.png \
103
+ --text_detection_model_name PP-OCRv4_mobile_det \
104
+ --text_recognition_model_name PP-OCRv4_mobile_rec \
105
+ --use_doc_orientation_classify False \
106
+ --use_doc_unwarping False \
107
+ --use_textline_orientation False \
108
+ --save_path ./output \
109
+ --device gpu:0
110
+ ```
111
+
112
+ Results are printed to the terminal:
113
+
114
+ ```json
115
+ {'res': {'input_path': '/root/.paddlex/predict_input/3ul2Rq4Sk5Cn-l69D695U.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': False}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 356, 105],
116
+ ...,
117
+ [ 356, 129]],
118
+
119
+ ...,
120
+
121
+ [[ 630, 1432],
122
+ ...,
123
+ [ 630, 1451]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['AlgorithmsfortheMarkovEntropyDecomposition', 'AndrewJ.FerrisandDavidPoulin', 'DepartementdePhysique,UniversitedeSherbrooke,Quebec,J1K2R1,Canada', '(Dated:October 31,2018)', 'TheMarkoventropydecomposition(MED)isarecently-proposed,cluster-basedsimulationmethodforfi-', 'nite temperature quantum systems with arbitrary geometry. In this paper, we detail numerical algorithms for', 'performingtherequiredsteps oftheMED,principallysolvingaminimizationproblemwithapreconditioned', '2107', "Newton's algorithm, as well as how to extract global susceptibilities and thermal responses. We demonstrate", 'thepowerof themethodwiththespin-1/2XXZmodelonthe2Dsquarelattice,includingtheextractionof', 'criticalpointsanddetailsofeachphase.Althoughthemethodsharessomequalitativesimilaritieswithexact-', 'diagonalization,we show the MED is both more accurate and significantly more fexible', '', 'PACS numbers: 05.10.a, 02.50.Ng, 03.67.a, 74.40.Kb', '6', '1', 'INTRODUCTION', 'This approximation becomes exactin the case of a1Dquan', 'tum (or classical)Markov chain[10],and leads to an expo', 'g', 'Althoughtheequationsgoverningquantummany-body', 'nentialreduction of costfor exact entropy calculationswhen', 'C', 'systemsares', 'simpletowritedown,findingsolutionsforthe', 'theglobaldensitymatrixisahigher-dimensionalMarkovnet-', 'H', 'majorityof systems remainsincrediblydifficult.Modern', 'work state[12,13].', 'physicsfinds itself inneedof new tools tocompute theemer-', 'Thesecond approximationused intheMEDapproach is', 'gent behavioroflarge,many-body systems.', 'relatedtotheN-representibilityproblem.Givenasetoflo', '', 'T', 'Therehasbeen a greatvariety of tools developed totackle', 'calbut overlappingreduceddensitymatrices{pi},itis avery', 'many-body problems,but in general, large 2D and 3D quan-', 'challengingproblemtodetermineifthereexistsaglobalden', '1', 'tumsystemsremainhardtodealwith.N', 'Mostsystemsare', 'sityoperatorwhichispositivesemi-definiteandwhosepartial', 'thoughttobenon-integrable,soexactanalyticsolutionsare', 'trace agreeswitheachpi.This problemis QMA-hard(the', 'notusuallyexpected.Directnumericaldiagonalizationcanbe', 'quantum analogue of NP)[14,15],and is hopelessly diffi', 'performedforrelativelysmallsystems', 'howevertheemer', 'cult toenforce.Thus,the second approximationemployed', 'gentbehaviorofasysteminthethermodynamiclimitmaybe', 'involves ignoringglobal consistency with apositive opera', 'difficulttoextract,especiallyins', 'systemswithlargecorrelation', 'tor,whilerequiringlocal consistency on any overlappingre', 'lengths.MonteCarloapproachesaretechnicallyexact(upto', 'gionsbetweenthep.Atthezero-temperaturelimit,theMED', 'samplingerror),butsufferfromtheso-calledsignproblem', 'approachbecomesanalogoustothevariationalnth-orderre-', 'forfermionic,frustrated,or dynamical problems.Thus we are', 'duceddensitymatrix', 'approach,wherepositivityisenforced', 'limited to search for clever approximations to solve the ma-', 'on allreduceddensitymatricesofsizen[16-18].', 'jorityofmany-bodyproblems', 'TheMEDapproachisanextremelyflexibleclustermethod', 'Over thepastcentury,hundredsof suchapproximations', 'applicabletobothtranslationallyinvariantsystemsofanydi', 'havebeenproposed,andwewillmentionjustafewnotable', 'mensioninthethermodynamiclimit,aswellasfinitesystems', 'examplesapplicabletoquantumlatticemodels.Mean-field', 'or systems without translationalinvariance(e.g.disordered', 'theoryiss', 'simplea', 'andfrequentlyarrivesatthecorrectquali', 'lattices,orharmonicallyt', 'trappeda', 'atomsinopticallattices)', 'tativedescription,butoftenfailswhencorrelationsareim', 'The free energy given by MED is guaranteed to lower bound', 'portant. Density-matrix renormalisation group (DMRG)[1]', 'the true free energy,which in turn lower-bounds the ground', 'is efficient and extremely accurate atsolving1Dproblems', 'stateenergy—t', 'thusprovidinganaturalcomplementtovaria', 'butthecomputationalcostgrowsexponentiallywithsystem', 'tional approacheswhichupper-bound thegroundstateenergy', 'sizeintwo-or higher-dimensions[2,3].F', 'Relatedtensor', 'Theabilitytoprovidearigorousground-stateenergywindow', 'networktechniquesdesignedfor2Dsystemsarestillinthein', 'is apowerfulvalidation tool,creating avery compellingrea-', 'infancy[4-6].Series-expansionmethods[7]canbesuccess-', 'son tousethis approach', 'ful,but may diverge or otherwise converge slowly,obscuring', 'Inthispaperwepaperwepresent apedagogicalintroduc', 'thestateincertainregimes.', 'Thereexistavarietyofcluster', 'tiontoMED,includingnumericalimplementationissuesand', 'basedtechniques,suchasdynamical-mean-fieldtheory[8]', 'applicationsto2Dquantumlatticemodelsinthethermody', 'anddensity-matrixembedding[9]', 'namiclimit.In Sec.I', 'II,wegiveabrief', 'derivationofthe', 'Herewe discuss theso-calledMarkoventropydecompo-', 'Markoventropydecomposition.SectionII outlines arobust', 'sition(MED),recentlyproposed byPoulin&Hastings [10]', 'numericalstrategyfor optimizingtheclusters thatmakeup', '(and analogoustoaslightlyearlier classical algorithm[11])', 'thedecomposition.InSec.IVweshowhowwecanextend', 'Thisisaself-consistentclustermethodforfinite temperature', 'thesealgorithmstoextractnon-trivialinformation,suchas', 'systems that takes advantage of an approximation of the(von', 'specificheat andsusceptibilities.Wepresentan application of', 'Neumann)entropy.In[1o],it was shown that the entropy', 'themethod to the spin-1/2XXZmodelon a 2Dsquarelattice', 'persitecanberigorouslyupperboundedusingonlylocalin-', 'inSec.V,describinghowtocharacterizethephasediagram', 'formation—alocal,reduced density matrix on Nsites,say.', '', 'and determine criticalpoints,before concluding inSec.VI.'], 'rec_scores': array([0.9952876 , ..., 0.95561302]), 'rec_polys': array([[[ 356, 105],
124
+ ...,
125
+ [ 356, 129]],
126
+
127
+ ...,
128
+
129
+ [[ 630, 1432],
130
+ ...,
131
+ [ 630, 1451]]], dtype=int16), 'rec_boxes': array([[ 356, ..., 130],
132
+ ...,
133
+ [ 630, ..., 1451]], dtype=int16)}}
134
+ ```
135
+
136
+ If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
137
+
138
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/g6n-H2VFG5ZYD0J8YnVfh.jpeg)
139
+
140
+ The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
141
+
142
+ ```python
143
+ from paddleocr import PaddleOCR
144
+
145
+ ocr = PaddleOCR(
146
+ text_detection_model_name="PP-OCRv4_mobile_det",
147
+ text_recognition_model_name="PP-OCRv4_mobile_rec",
148
+ use_doc_orientation_classify=False, # Disables document orientation classification model via this parameter
149
+ use_doc_unwarping=False, # Disables text image rectification model via this parameter
150
+ use_textline_orientation=False, # Disables text line orientation classification model via this parameter
151
+ )
152
+ result = ocr.predict("./3ul2Rq4Sk5Cn-l69D695U.png")
153
+ for res in result:
154
+ res.print()
155
+ res.save_to_img("output")
156
+ res.save_to_json("output")
157
+ ```
158
+
159
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
160
+
161
+
162
+ ## Links
163
+
164
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
165
+
166
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)