Tingquan commited on
Commit
185c9db
·
verified ·
1 Parent(s): acf72ec

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +175 -0
README.md ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # PP-OCRv4_mobile_rec
6
+
7
+ ## Introduction
8
+
9
+ PP-OCRv4_mobile_rec is a text line recognition model within the PP-OCRv4_rec series, developed by the PaddleOCR team. PP-OCRv4 is an upgrade over PP-OCRv3. The overall framework retains the same pipeline as PP-OCRv3, with optimizations made to several modules such as data, network structure, and training strategy for both detection and recognition models. It supports text line recognition in general Chinese and English scenarios, but mainly focuses on Chinese. The key accuracy metrics are as follow:
10
+
11
+ <table>
12
+ <tr>
13
+ <th>Model</th>
14
+ <th>Recognition Avg Accuracy(%)</th>
15
+ <th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
16
+ <th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
17
+ <th>Model Storage Size (M)</th>
18
+ <th>Introduction</th>
19
+ </tr>
20
+ <tr>
21
+ <td>PP-OCRv4_mobile_rec</td>
22
+ <td>83.28</td>
23
+ <td>4.82 / 1.20</td>
24
+ <td>16.74 / 4.64</td>
25
+ <td>11 M</td>
26
+ <td>A lightweight recognition model of PP-OCRv4 with high inference efficiency, suitable for deployment on various hardware devices, including edge devices.</td>
27
+ </tr>
28
+ </table>
29
+
30
+
31
+
32
+ **Note**: If any character (including punctuation) in a line is incorrect, the entire line is marked as wrong. This ensures higher accuracy in practical applications.
33
+
34
+ ## Quick Start
35
+
36
+ ### Installation
37
+
38
+ 1. PaddlePaddle
39
+
40
+ Please refer to the following commands to install PaddlePaddle using pip:
41
+
42
+ ```bash
43
+ # for CUDA11.8
44
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
45
+
46
+ # for CUDA12.6
47
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
48
+
49
+ # for CPU
50
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
51
+ ```
52
+
53
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
54
+
55
+ 2. PaddleOCR
56
+
57
+ Install the latest version of the PaddleOCR inference package from PyPI:
58
+
59
+ ```bash
60
+ python -m pip install paddleocr
61
+ ```
62
+
63
+ ### Model Usage
64
+
65
+ You can quickly experience the functionality with a single command:
66
+
67
+ ```bash
68
+ paddleocr text_recognition \
69
+ --model_name PP-OCRv4_mobile_rec \
70
+ -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/QmaPtftqwOgCtx0AIvU2z.png
71
+ ```
72
+
73
+ You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
74
+
75
+ ```python
76
+ from paddleocr import TextRecognition
77
+ model = TextRecognition(model_name="PP-OCRv4_mobile_rec")
78
+ output = model.predict(input="QmaPtftqwOgCtx0AIvU2z.png", batch_size=1)
79
+ for res in output:
80
+ res.print()
81
+ res.save_to_img(save_path="./output/")
82
+ res.save_to_json(save_path="./output/res.json")
83
+ ```
84
+
85
+ After running, the obtained result is as follows:
86
+
87
+ ```json
88
+ {'res': {'input_path': '/root/.paddlex/predict_input/QmaPtftqwOgCtx0AIvU2z.png', 'page_index': None, 'rec_text': 'the number of model parameters and FLOPs get larger, it', 'rec_score': 0.9915317893028259}}
89
+ ```
90
+
91
+ The visualized image is as follows:
92
+
93
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/-zXrX1v7GFGMsTQaSeY_d.png)
94
+
95
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start).
96
+
97
+ ### Pipeline Usage
98
+
99
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
100
+
101
+ #### PP-OCRv4
102
+
103
+ The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
104
+ * Document Image Orientation Classification Module (Optional)
105
+ * Text Image Unwarping Module (Optional)
106
+ * Text Line Orientation Classification Module (Optional)
107
+ * Text Detection Module
108
+ * Text Recognition Module
109
+
110
+ Run a single command to quickly experience the OCR pipeline:
111
+
112
+ ```bash
113
+ paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png \
114
+ --text_recognition_model_name PP-OCRv4_mobile_rec \
115
+ --use_doc_orientation_classify False \
116
+ --use_doc_unwarping False \
117
+ --use_textline_orientation True \
118
+ --save_path ./output \
119
+ --device gpu:0
120
+ ```
121
+
122
+ Results are printed to the terminal:
123
+
124
+ ```json
125
+ {'res': {'input_path': '/root/.paddlex/predict_input/818ebrVG4OtH3sjLR-NRI.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 0, 10],
126
+ ...,
127
+ [ 0, 72]],
128
+
129
+ ...,
130
+
131
+ [[189, 915],
132
+ ...,
133
+ [190, 960]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([1, ..., 0]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['准动国本008866', 'SSS', '登机牌', 'BOARDING', '座位号', 'SEAT NO.', '舱位', 'CLASS', '序号', '日期 DATE', 'SERIAL NO.', '航班FLIGHT', 'W', '035', 'MU237903DEC', '始发地', 'FROM', '登机口', 'GATE', '登机时间BDT', '目的地TO', '福州', 'TAIYUAN', 'G11', 'FUZHOU', '身份识别IDNO.', '姓名', 'NAME', 'ZHANGQIWEI', '票号TKTNO.', '张祺伟', '票价FARE', 'ETKT7813699238489/1', '登机口于起飞前10分钟关闭GATESCL0SE10MINUTESBEFOREDEPARTURETIME'], 'rec_scores': array([0.34848779, ..., 0.96997255]), 'rec_polys': array([[[ 0, 10],
134
+ ...,
135
+ [ 0, 72]],
136
+
137
+ ...,
138
+
139
+ [[189, 915],
140
+ ...,
141
+ [190, 960]]], dtype=int16), 'rec_boxes': array([[ 0, ..., 72],
142
+ ...,
143
+ [189, ..., 960]], dtype=int16)}}
144
+ ```
145
+
146
+ If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
147
+
148
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/OXvRu-6Q6m7Zc5GQJU6f-.png)
149
+
150
+ The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
151
+
152
+ ```python
153
+ from paddleocr import PaddleOCR
154
+
155
+ ocr = PaddleOCR(
156
+ text_recognition_model_name="PP-OCRv4_mobile_rec",
157
+ use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
158
+ use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
159
+ use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
160
+ device="gpu:0", # Use device to specify GPU for model inference
161
+ )
162
+ result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png")
163
+ for res in result:
164
+ res.print()
165
+ res.save_to_img("output")
166
+ res.save_to_json("output")
167
+ ```
168
+
169
+ The default model used in pipeline is `PP-OCRv5_server_rec`, so it is needed that specifing to `PP-OCRv4_mobile_rec` by argument `text_recognition_model_name`. And you can also use the local model file by argument `text_recognition_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
170
+
171
+ ## Links
172
+
173
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
174
+
175
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)