File size: 13,112 Bytes
f9f9327
 
a58669e
 
 
 
 
 
 
 
 
f9f9327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
license: apache-2.0
library_name: PaddleOCR
language:
- en
- zh
pipeline_tag: image-to-text
tags:
- OCR
- PaddlePaddle
- PaddleOCR
---

# SLANeXt_wireless

## Introduction

Table structure recognition is an important component of table recognition systems, capable of converting non-editable table images into editable table formats (such as HTML). The goal of table structure recognition is to identify the positions of rows, columns, and cells in tables. The performance of this module directly affects the accuracy and efficiency of the entire table recognition system. The table structure recognition module usually outputs HTML code for the table area, which is then passed as input to the tabl recognition pipeline for further processing.

<table>
<tr>
<th>Model</th>
<th>Accuracy (%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High Performance Mode]</th>
<th>Model Storage Size (M)</th>
</tr>
<tr>
<td>SLANeXt_wireless</td>
<td>69.65</td>
<td>--</td>
<td>--</td>
<td>351M</td>
</tr>
</table>

**Note**: The accuracy of SLANeXt_wireless comes from the results of joint testing with SLANeXt_wired.


### Installation

1. PaddlePaddle

Please refer to the following commands to install PaddlePaddle using pip:

```bash
# for CUDA11.8
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/

# for CUDA12.6
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/

# for CPU
python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
```

For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).

2. PaddleOCR

Install the latest version of the PaddleOCR inference package from PyPI:

```bash
python -m pip install paddleocr
```

### Model Usage

You can quickly experience the functionality with a single command:

```bash
paddleocr table_structure_recognition \
    --model_name SLANeXt_wireless \
    -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/6rfhb-CXOHowonjpBsaUJ.png
```

You can also integrate the model inference of the table classification module into your project. Before running the following code, please download the sample image to your local machine.

```python
from paddleocr import TableStructureRecognition
model = TableStructureRecognition(model_name="SLANeXt_wireless")
output = model.predict(input="6rfhb-CXOHowonjpBsaUJ.png", batch_size=1)
for res in output:
    res.print(json_format=False)
    res.save_to_json("./output/res.json")
```

After running, the obtained result is as follows:

```json
{'res': {'input_path': '6rfhb-CXOHowonjpBsaUJ.png', 'page_index': None, 'bbox': [[5, 4, 48, 5, 46, 85, 5, 81], [84, 6, 146, 6, 143, 101, 83, 98], [186, 6, 217, 6, 212, 104, 184, 98], [239, 7, 281, 8, 276, 107, 235, 108], [324, 6, 405, 6, 404, 105, 323, 106], [405, 4, 488, 5, 488, 100, 403, 94], [3, 56, 96, 60, 95, 187, 3, 180], [108, 68, 157, 71, 159, 193, 110, 187], [179, 75, 207, 79, 211, 199, 184, 192], [238, 72, 277, 76, 281, 203, 243, 199], [318, 68, 400, 70, 404, 207, 325, 205], [395, 66, 494, 68, 494, 214, 397, 212], [11, 138, 62, 145, 68, 329, 12, 321], [105, 151, 156, 158, 171, 332, 117, 323], [177, 157, 210, 166, 229, 322, 197, 312], [232, 152, 276, 159, 295, 322, 253, 316], [313, 142, 396, 147, 409, 330, 332, 326], [392, 139, 491, 144, 492, 332, 404, 330], [3, 239, 86, 254, 103, 450, 3, 445], [97, 251, 152, 261, 176, 458, 116, 454], [172, 254, 211, 265, 239, 461, 200, 458], [235, 248, 289, 257, 316, 466, 264, 464], [310, 235, 402, 242, 419, 469, 337, 468], [381, 229, 491, 236, 492, 469, 400, 468], [9, 340, 74, 361, 88, 490, 11, 489], [95, 338, 129, 353, 150, 493, 113, 492], [176, 342, 192, 358, 221, 493, 206, 492], [235, 335, 261, 351, 289, 493, 265, 492], [310, 325, 372, 339, 393, 493, 338, 493], [382, 321, 482, 334, 485, 493, 402, 493]], 'structure': ['<html>', '<body>', '<table>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '</table>', '</body>', '</html>'], 'structure_score': 0.9999998}}
```

For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/main/en/version3.x/module_usage/table_structure_recognition.html#iii-quick-start).

### Pipeline Usage

The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.

#### General Table Recognition V2 Pipeline

The general table recognition V2 pipeline is used to solve table recognition tasks by extracting information from images and outputting it in HTML or Excel format. And there are 8 modules in the pipeline: 
* Table Classification Module
* Table Structure Recognition Module
* Table Cell Detection Module
* Text Detection Module
* Text Recognition Module
* Layout Region Detection Module (Optional)
* Document Image Orientation Classification Module (Optional)
* Text Image Unwarping Module (Optional)

Run a single command to quickly experience the general table recognition V2 pipeline:

```bash

paddleocr table_recognition_v2 -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/mabagznApI1k9R8qFoTLc.png  \
    --use_doc_orientation_classify False  \
    --use_doc_unwarping False \
    --save_path ./output \
    --device gpu:0 
```

Results are printed to the terminal:

```json
{'res': {'input_path': 'mabagznApI1k9R8qFoTLc.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_layout_detection': True, 'use_ocr_model': True}, 'layout_det_res': {'input_path': None, 'page_index': None, 'boxes': [{'cls_id': 8, 'label': 'table', 'score': 0.86655592918396, 'coordinate': [0.0125130415, 0.41920784, 1281.3737, 585.3884]}]}, 'overall_ocr_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_textline_orientation': False}, 'dt_polys': array([[[   9,   21],
        ...,
        [   9,   59]],

       ...,

       [[1046,  536],
        ...,
        [1046,  573]]], dtype=int16), 'text_det_params': {'limit_side_len': 960, 'limit_type': 'max', 'thresh': 0.3, 'box_thresh': 0.6, 'unclip_ratio': 2.0}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0, 'rec_texts': ['部门', '报销人', '报销事由', '批准人:', '单据', '张', '合计金额', '元', '车费票', '其', '火车费票', '飞机票', '中', '旅住宿费', '其他', '补贴'], 'rec_scores': array([0.99958128, ..., 0.99317062]), 'rec_polys': array([[[   9,   21],
        ...,
        [   9,   59]],

       ...,

       [[1046,  536],
        ...,
        [1046,  573]]], dtype=int16), 'rec_boxes': array([[   9, ...,   59],
       ...,
       [1046, ...,  573]], dtype=int16)}, 'table_res_list': [{'cell_box_list': [array([ 0.13052222, ..., 73.08310249]), array([104.43082511, ...,  73.27777413]), array([319.39041221, ...,  73.30439308]), array([424.2436837 , ...,  73.44736794]), array([580.75836265, ...,  73.24003914]), array([723.04370201, ...,  73.22717598]), array([984.67315757, ...,  73.20420387]), array([1.25130415e-02, ..., 5.85419208e+02]), array([984.37072837, ..., 137.02281502]), array([984.26586998, ..., 201.22290352]), array([984.24017417, ..., 585.30775765]), array([1039.90606773, ...,  265.44664314]), array([1039.69549644, ...,  329.30540779]), array([1039.66546714, ...,  393.57319954]), array([1039.5122689 , ...,  457.74644783]), array([1039.55535972, ...,  521.73030403]), array([1039.58612144, ...,  585.09468392])], 'pred_html': '<html><body><table><tbody><tr><td>部门</td><td></td><td>报销人</td><td></td><td>报销事由</td><td></td><td colspan="2">批准人:</td></tr><tr><td colspan="6" rowspan="8"></td><td colspan="2">单据 张</td></tr><tr><td colspan="2">合计金额 元</td></tr><tr><td rowspan="6">其 中</td><td>车费票</td></tr><tr><td>火车费票</td></tr><tr><td>飞机票</td></tr><tr><td>旅住宿费</td></tr><tr><td>其他</td></tr><tr><td>补贴</td></tr></tbody></table></body></html>', 'table_ocr_pred': {'rec_polys': array([[[   9,   21],
        ...,
        [   9,   59]],

       ...,

       [[1046,  536],
        ...,
        [1046,  573]]], dtype=int16), 'rec_texts': ['部门', '报销人', '报销事由', '批准人:', '单据', '张', '合计金额', '元', '车费票', '其', '火车费票', '飞机票', '中', '旅住宿费', '其他', '补贴'], 'rec_scores': array([0.99958128, ..., 0.99317062]), 'rec_boxes': array([[   9, ...,   59],
       ...,
       [1046, ...,  573]], dtype=int16)}}]}}
```

If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/b3mPpaMsK049qxsTbotvI.png)

The command-line method is for quick experience. For project integration, also only a few codes are needed as well:

```python
from paddleocr import TableRecognitionPipelineV2

pipeline = TableRecognitionPipelineV2(
    use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
    use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
)
# pipeline = TableRecognitionPipelineV2(use_doc_orientation_classify=True) # Specify whether to use the document orientation classification model with use_doc_orientation_classify
# pipeline = TableRecognitionPipelineV2(use_doc_unwarping=True) # Specify whether to use the text image unwarping module with use_doc_unwarping
# pipeline = TableRecognitionPipelineV2(device="gpu") # Specify the device to use GPU for model inference
output = pipeline.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/mabagznApI1k9R8qFoTLc.png")
for res in output:
    res.print() ## Print the predicted structured output
    res.save_to_img("./output/")
    res.save_to_xlsx("./output/")
    res.save_to_html("./output/")
    res.save_to_json("./output/")
```

For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/main/en/version3.x/pipeline_usage/table_recognition_v2.html#2-quick-start).

#### PP-StructureV3

Layout analysis is a technique used to extract structured information from document images. PP-StructureV3 includes the following six modules:
* Layout Detection Module
* General OCR Pipeline
* Document Image Preprocessing Pipeline (Optional)
* Table Recognition Pipeline (Optional)
* Seal Recognition Pipeline (Optional)
* Formula Recognition Pipeline (Optional)

Run a single command to quickly experience the PP-StructureV3 pipeline:

```bash
paddleocr pp_structurev3 -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/mG4tnwfrvECoFMu-S9mxo.png \
    --use_doc_orientation_classify False \
    --use_doc_unwarping False \
    --use_textline_orientation False \
    --device gpu:0
```

Results would be printed to the terminal. If save_path is specified, the results will be saved under `save_path`. 

Just a few lines of code can experience the inference of the pipeline. Taking the PP-StructureV3 pipeline as an example:

```python
from paddleocr import PPStructureV3

pipeline = PPStructureV3(
    use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
    use_doc_unwarping=False,    # Use use_doc_unwarping to enable/disable document unwarping module
    use_textline_orientation=False, # Use use_textline_orientation to enable/disable textline orientation classification model
    device="gpu:0", # Use device to specify GPU for model inference
    )
output = pipeline.predict(".mG4tnwfrvECoFMu-S9mxo.png")
for res in output:
    res.print() # Print the structured prediction output
    res.save_to_json(save_path="output") ## Save the current image's structured result in JSON format
    res.save_to_markdown(save_path="output") ## Save the current image's result in Markdown format
```

For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/PP-StructureV3.html#2-quick-start).

## Links

[PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)

[PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)