File size: 11,188 Bytes
2b395f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
#!/usr/bin/env python3
"""
FRED ML - Streamlit Frontend
Interactive web application for economic data analysis
"""
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import boto3
import json
from datetime import datetime, timedelta
import requests
import os
from typing import Dict, List, Optional
# Page configuration
st.set_page_config(
page_title="FRED ML - Economic Data Analysis",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize AWS clients
@st.cache_resource
def init_aws_clients():
"""Initialize AWS clients for S3 and Lambda"""
try:
s3_client = boto3.client('s3')
lambda_client = boto3.client('lambda')
return s3_client, lambda_client
except Exception as e:
st.error(f"Failed to initialize AWS clients: {e}")
return None, None
# Load configuration
@st.cache_data
def load_config():
"""Load application configuration"""
return {
's3_bucket': os.getenv('S3_BUCKET', 'fredmlv1'),
'lambda_function': os.getenv('LAMBDA_FUNCTION', 'fred-ml-processor'),
'api_endpoint': os.getenv('API_ENDPOINT', 'http://localhost:8000')
}
def get_available_reports(s3_client, bucket_name: str) -> List[Dict]:
"""Get list of available reports from S3"""
try:
response = s3_client.list_objects_v2(
Bucket=bucket_name,
Prefix='reports/'
)
reports = []
if 'Contents' in response:
for obj in response['Contents']:
if obj['Key'].endswith('.json'):
reports.append({
'key': obj['Key'],
'last_modified': obj['LastModified'],
'size': obj['Size']
})
return sorted(reports, key=lambda x: x['last_modified'], reverse=True)
except Exception as e:
st.error(f"Failed to load reports: {e}")
return []
def get_report_data(s3_client, bucket_name: str, report_key: str) -> Optional[Dict]:
"""Get report data from S3"""
try:
response = s3_client.get_object(Bucket=bucket_name, Key=report_key)
data = json.loads(response['Body'].read().decode('utf-8'))
return data
except Exception as e:
st.error(f"Failed to load report data: {e}")
return None
def trigger_lambda_analysis(lambda_client, function_name: str, payload: Dict) -> bool:
"""Trigger Lambda function for analysis"""
try:
response = lambda_client.invoke(
FunctionName=function_name,
InvocationType='Event', # Asynchronous
Payload=json.dumps(payload)
)
return response['StatusCode'] == 202
except Exception as e:
st.error(f"Failed to trigger analysis: {e}")
return False
def create_time_series_plot(df: pd.DataFrame, title: str = "Economic Indicators"):
"""Create interactive time series plot"""
fig = go.Figure()
for column in df.columns:
if column != 'Date':
fig.add_trace(
go.Scatter(
x=df.index,
y=df[column],
mode='lines',
name=column,
line=dict(width=2)
)
)
fig.update_layout(
title=title,
xaxis_title="Date",
yaxis_title="Value",
hovermode='x unified',
height=500
)
return fig
def create_correlation_heatmap(df: pd.DataFrame):
"""Create correlation heatmap"""
corr_matrix = df.corr()
fig = px.imshow(
corr_matrix,
text_auto=True,
aspect="auto",
title="Correlation Matrix"
)
return fig
def main():
"""Main Streamlit application"""
# Initialize AWS clients
s3_client, lambda_client = init_aws_clients()
config = load_config()
# Sidebar
st.sidebar.title("FRED ML Dashboard")
st.sidebar.markdown("---")
# Navigation
page = st.sidebar.selectbox(
"Navigation",
["π Dashboard", "π Analysis", "π Reports", "βοΈ Settings"]
)
if page == "π Dashboard":
show_dashboard(s3_client, config)
elif page == "π Analysis":
show_analysis_page(lambda_client, config)
elif page == "π Reports":
show_reports_page(s3_client, config)
elif page == "βοΈ Settings":
show_settings_page(config)
def show_dashboard(s3_client, config):
"""Show main dashboard"""
st.title("π FRED ML Dashboard")
st.markdown("Economic Data Analysis Platform")
# Get latest report
reports = get_available_reports(s3_client, config['s3_bucket'])
if reports:
latest_report = reports[0]
report_data = get_report_data(s3_client, config['s3_bucket'], latest_report['key'])
if report_data:
col1, col2, col3 = st.columns(3)
with col1:
st.metric(
"Latest Analysis",
latest_report['last_modified'].strftime("%Y-%m-%d"),
f"Updated {latest_report['last_modified'].strftime('%H:%M')}"
)
with col2:
st.metric(
"Data Points",
report_data.get('total_observations', 'N/A'),
"Economic indicators"
)
with col3:
st.metric(
"Time Range",
f"{report_data.get('start_date', 'N/A')} - {report_data.get('end_date', 'N/A')}",
"Analysis period"
)
# Show latest data visualization
if 'data' in report_data and report_data['data']:
df = pd.DataFrame(report_data['data'])
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
st.subheader("Latest Economic Indicators")
fig = create_time_series_plot(df)
st.plotly_chart(fig, use_container_width=True)
# Correlation matrix
st.subheader("Correlation Analysis")
corr_fig = create_correlation_heatmap(df)
st.plotly_chart(corr_fig, use_container_width=True)
else:
st.warning("No report data available")
else:
st.info("No reports available. Run an analysis to generate reports.")
def show_analysis_page(lambda_client, config):
"""Show analysis configuration page"""
st.title("π Economic Data Analysis")
# Analysis parameters
st.subheader("Analysis Parameters")
col1, col2 = st.columns(2)
with col1:
# Economic indicators selection
indicators = [
"GDP", "UNRATE", "CPIAUCSL", "FEDFUNDS", "DGS10",
"DEXUSEU", "PAYEMS", "INDPRO", "M2SL", "PCE"
]
selected_indicators = st.multiselect(
"Select Economic Indicators",
indicators,
default=["GDP", "UNRATE", "CPIAUCSL"]
)
with col2:
# Date range
end_date = datetime.now()
start_date = end_date - timedelta(days=365*2) # 2 years
start_date_input = st.date_input(
"Start Date",
value=start_date,
max_value=end_date
)
end_date_input = st.date_input(
"End Date",
value=end_date,
max_value=end_date
)
# Analysis options
st.subheader("Analysis Options")
col1, col2 = st.columns(2)
with col1:
include_visualizations = st.checkbox("Generate Visualizations", value=True)
include_correlation = st.checkbox("Correlation Analysis", value=True)
with col2:
include_forecasting = st.checkbox("Time Series Forecasting", value=False)
include_statistics = st.checkbox("Statistical Summary", value=True)
# Run analysis button
if st.button("π Run Analysis", type="primary"):
if not selected_indicators:
st.error("Please select at least one economic indicator")
elif start_date_input >= end_date_input:
st.error("Start date must be before end date")
else:
with st.spinner("Running analysis..."):
payload = {
'indicators': selected_indicators,
'start_date': start_date_input.strftime('%Y-%m-%d'),
'end_date': end_date_input.strftime('%Y-%m-%d'),
'options': {
'visualizations': include_visualizations,
'correlation': include_correlation,
'forecasting': include_forecasting,
'statistics': include_statistics
}
}
success = trigger_lambda_analysis(lambda_client, config['lambda_function'], payload)
if success:
st.success("Analysis triggered successfully! Check the Reports page for results.")
else:
st.error("Failed to trigger analysis")
def show_reports_page(s3_client, config):
"""Show reports page"""
st.title("π Analysis Reports")
reports = get_available_reports(s3_client, config['s3_bucket'])
if reports:
st.subheader(f"Available Reports ({len(reports)})")
for i, report in enumerate(reports):
with st.expander(f"Report {i+1} - {report['last_modified'].strftime('%Y-%m-%d %H:%M')}"):
col1, col2 = st.columns([3, 1])
with col1:
st.write(f"**File:** {report['key']}")
st.write(f"**Size:** {report['size']} bytes")
st.write(f"**Last Modified:** {report['last_modified']}")
with col2:
if st.button(f"View Report {i+1}", key=f"view_{i}"):
report_data = get_report_data(s3_client, config['s3_bucket'], report['key'])
if report_data:
st.json(report_data)
else:
st.info("No reports available. Run an analysis to generate reports.")
def show_settings_page(config):
"""Show settings page"""
st.title("βοΈ Settings")
st.subheader("Configuration")
col1, col2 = st.columns(2)
with col1:
st.write(f"**S3 Bucket:** {config['s3_bucket']}")
st.write(f"**Lambda Function:** {config['lambda_function']}")
with col2:
st.write(f"**API Endpoint:** {config['api_endpoint']}")
st.subheader("Environment Variables")
st.code(f"""
S3_BUCKET={config['s3_bucket']}
LAMBDA_FUNCTION={config['lambda_function']}
API_ENDPOINT={config['api_endpoint']}
""")
if __name__ == "__main__":
main() |