File size: 29,174 Bytes
26a8ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
"""
Comprehensive Analytics Pipeline
Orchestrates advanced analytics including forecasting, segmentation, statistical modeling, and insights
"""
import logging
import os
from datetime import datetime
from typing import Dict, List, Optional, Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from pathlib import Path
from src.analysis.economic_forecasting import EconomicForecaster
from src.analysis.economic_segmentation import EconomicSegmentation
from src.analysis.statistical_modeling import StatisticalModeling
from src.core.enhanced_fred_client import EnhancedFREDClient
logger = logging.getLogger(__name__)
class ComprehensiveAnalytics:
"""
Comprehensive analytics pipeline for economic data analysis
combining forecasting, segmentation, statistical modeling, and insights extraction
"""
def __init__(self, api_key: str, output_dir: str = "data/exports"):
"""
Initialize comprehensive analytics pipeline
Args:
api_key: FRED API key
output_dir: Output directory for results
"""
self.client = EnhancedFREDClient(api_key)
self.output_dir = Path(output_dir)
self.output_dir.mkdir(parents=True, exist_ok=True)
# Initialize analytics modules
self.forecaster = None
self.segmentation = None
self.statistical_modeling = None
# Results storage
self.data = None
self.results = {}
self.reports = {}
def run_complete_analysis(self, indicators: List[str] = None,
start_date: str = '1990-01-01',
end_date: str = None,
forecast_periods: int = 4,
include_visualizations: bool = True) -> Dict:
"""
Run complete advanced analytics pipeline
Args:
indicators: List of economic indicators to analyze
start_date: Start date for analysis
end_date: End date for analysis
forecast_periods: Number of periods to forecast
include_visualizations: Whether to generate visualizations
Returns:
Dictionary with all analysis results
"""
logger.info("Starting comprehensive economic analytics pipeline")
# Step 1: Data Collection
logger.info("Step 1: Collecting economic data")
self.data = self.client.fetch_economic_data(
indicators=indicators,
start_date=start_date,
end_date=end_date,
frequency='auto'
)
# Step 2: Data Quality Assessment
logger.info("Step 2: Assessing data quality")
quality_report = self.client.validate_data_quality(self.data)
self.results['data_quality'] = quality_report
# Step 3: Initialize Analytics Modules
logger.info("Step 3: Initializing analytics modules")
self.forecaster = EconomicForecaster(self.data)
self.segmentation = EconomicSegmentation(self.data)
self.statistical_modeling = StatisticalModeling(self.data)
# Step 4: Statistical Modeling
logger.info("Step 4: Performing statistical modeling")
statistical_results = self._run_statistical_analysis()
self.results['statistical_modeling'] = statistical_results
# Step 5: Economic Forecasting
logger.info("Step 5: Performing economic forecasting")
forecasting_results = self._run_forecasting_analysis(forecast_periods)
self.results['forecasting'] = forecasting_results
# Step 6: Economic Segmentation
logger.info("Step 6: Performing economic segmentation")
segmentation_results = self._run_segmentation_analysis()
self.results['segmentation'] = segmentation_results
# Step 7: Insights Extraction
logger.info("Step 7: Extracting insights")
insights = self._extract_insights()
self.results['insights'] = insights
# Step 8: Generate Reports and Visualizations
logger.info("Step 8: Generating reports and visualizations")
if include_visualizations:
self._generate_visualizations()
self._generate_comprehensive_report()
logger.info("Comprehensive analytics pipeline completed successfully")
return self.results
def _run_statistical_analysis(self) -> Dict:
"""Run comprehensive statistical analysis"""
results = {}
# Correlation analysis
logger.info(" - Performing correlation analysis")
correlation_results = self.statistical_modeling.analyze_correlations()
results['correlation'] = correlation_results
# Regression analysis for key indicators
key_indicators = ['GDPC1', 'INDPRO', 'RSAFS']
regression_results = {}
for target in key_indicators:
if target in self.data.columns:
logger.info(f" - Fitting regression model for {target}")
try:
regression_result = self.statistical_modeling.fit_regression_model(
target=target,
lag_periods=4,
include_interactions=False
)
regression_results[target] = regression_result
except Exception as e:
logger.warning(f"Regression failed for {target}: {e}")
regression_results[target] = {'error': str(e)}
results['regression'] = regression_results
# Granger causality analysis
logger.info(" - Performing Granger causality analysis")
causality_results = {}
for target in key_indicators:
if target in self.data.columns:
causality_results[target] = {}
for predictor in self.data.columns:
if predictor != target:
try:
causality_result = self.statistical_modeling.perform_granger_causality(
target=target,
predictor=predictor,
max_lags=4
)
causality_results[target][predictor] = causality_result
except Exception as e:
logger.warning(f"Causality test failed for {target} -> {predictor}: {e}")
causality_results[target][predictor] = {'error': str(e)}
results['causality'] = causality_results
return results
def _run_forecasting_analysis(self, forecast_periods: int) -> Dict:
"""Run comprehensive forecasting analysis"""
logger.info(" - Forecasting economic indicators")
# Focus on key indicators for forecasting
key_indicators = ['GDPC1', 'INDPRO', 'RSAFS']
available_indicators = [ind for ind in key_indicators if ind in self.data.columns]
if not available_indicators:
logger.warning("No key indicators available for forecasting")
return {'error': 'No suitable indicators for forecasting'}
# Perform forecasting
forecasting_results = self.forecaster.forecast_economic_indicators(available_indicators)
return forecasting_results
def _run_segmentation_analysis(self) -> Dict:
"""Run comprehensive segmentation analysis"""
results = {}
# Time period clustering
logger.info(" - Clustering time periods")
try:
time_period_clusters = self.segmentation.cluster_time_periods(
indicators=['GDPC1', 'INDPRO', 'RSAFS'],
method='kmeans'
)
results['time_period_clusters'] = time_period_clusters
except Exception as e:
logger.warning(f"Time period clustering failed: {e}")
results['time_period_clusters'] = {'error': str(e)}
# Series clustering
logger.info(" - Clustering economic series")
try:
series_clusters = self.segmentation.cluster_economic_series(
indicators=['GDPC1', 'INDPRO', 'RSAFS', 'CPIAUCSL', 'FEDFUNDS', 'DGS10'],
method='kmeans'
)
results['series_clusters'] = series_clusters
except Exception as e:
logger.warning(f"Series clustering failed: {e}")
results['series_clusters'] = {'error': str(e)}
return results
def _extract_insights(self) -> Dict:
"""Extract key insights from all analyses"""
insights = {
'key_findings': [],
'economic_indicators': {},
'forecasting_insights': [],
'segmentation_insights': [],
'statistical_insights': []
}
# Extract insights from forecasting
if 'forecasting' in self.results:
forecasting_results = self.results['forecasting']
for indicator, result in forecasting_results.items():
if 'error' not in result:
# Model performance insights
backtest = result.get('backtest', {})
if 'error' not in backtest:
mape = backtest.get('mape', 0)
if mape < 5:
insights['forecasting_insights'].append(
f"{indicator} forecasting shows excellent accuracy (MAPE: {mape:.2f}%)"
)
elif mape < 10:
insights['forecasting_insights'].append(
f"{indicator} forecasting shows good accuracy (MAPE: {mape:.2f}%)"
)
else:
insights['forecasting_insights'].append(
f"{indicator} forecasting shows moderate accuracy (MAPE: {mape:.2f}%)"
)
# Stationarity insights
stationarity = result.get('stationarity', {})
if 'is_stationary' in stationarity:
if stationarity['is_stationary']:
insights['forecasting_insights'].append(
f"{indicator} series is stationary, suitable for time series modeling"
)
else:
insights['forecasting_insights'].append(
f"{indicator} series is non-stationary, may require differencing"
)
# Extract insights from segmentation
if 'segmentation' in self.results:
segmentation_results = self.results['segmentation']
# Time period clustering insights
if 'time_period_clusters' in segmentation_results:
time_clusters = segmentation_results['time_period_clusters']
if 'error' not in time_clusters:
n_clusters = time_clusters.get('n_clusters', 0)
insights['segmentation_insights'].append(
f"Time periods clustered into {n_clusters} distinct economic regimes"
)
# Series clustering insights
if 'series_clusters' in segmentation_results:
series_clusters = segmentation_results['series_clusters']
if 'error' not in series_clusters:
n_clusters = series_clusters.get('n_clusters', 0)
insights['segmentation_insights'].append(
f"Economic series clustered into {n_clusters} groups based on behavior patterns"
)
# Extract insights from statistical modeling
if 'statistical_modeling' in self.results:
stat_results = self.results['statistical_modeling']
# Correlation insights
if 'correlation' in stat_results:
corr_results = stat_results['correlation']
significant_correlations = corr_results.get('significant_correlations', [])
if significant_correlations:
strongest_corr = significant_correlations[0]
insights['statistical_insights'].append(
f"Strongest correlation: {strongest_corr['variable1']} ↔ {strongest_corr['variable2']} "
f"(r={strongest_corr['correlation']:.3f})"
)
# Regression insights
if 'regression' in stat_results:
reg_results = stat_results['regression']
for target, result in reg_results.items():
if 'error' not in result:
performance = result.get('performance', {})
r2 = performance.get('r2', 0)
if r2 > 0.7:
insights['statistical_insights'].append(
f"{target} regression model shows strong explanatory power (R² = {r2:.3f})"
)
elif r2 > 0.5:
insights['statistical_insights'].append(
f"{target} regression model shows moderate explanatory power (R² = {r2:.3f})"
)
# Generate key findings
insights['key_findings'] = [
f"Analysis covers {len(self.data.columns)} economic indicators from {self.data.index.min().strftime('%Y-%m')} to {self.data.index.max().strftime('%Y-%m')}",
f"Dataset contains {len(self.data)} observations with {self.data.shape[0] * self.data.shape[1]} total data points",
f"Generated {len(insights['forecasting_insights'])} forecasting insights",
f"Generated {len(insights['segmentation_insights'])} segmentation insights",
f"Generated {len(insights['statistical_insights'])} statistical insights"
]
return insights
def _generate_visualizations(self):
"""Generate comprehensive visualizations"""
logger.info("Generating visualizations")
# Set style
plt.style.use('seaborn-v0_8')
sns.set_palette("husl")
# 1. Time Series Plot
self._plot_time_series()
# 2. Correlation Heatmap
self._plot_correlation_heatmap()
# 3. Forecasting Results
self._plot_forecasting_results()
# 4. Segmentation Results
self._plot_segmentation_results()
# 5. Statistical Diagnostics
self._plot_statistical_diagnostics()
logger.info("Visualizations generated successfully")
def _plot_time_series(self):
"""Plot time series of economic indicators"""
fig, axes = plt.subplots(3, 2, figsize=(15, 12))
axes = axes.flatten()
key_indicators = ['GDPC1', 'INDPRO', 'RSAFS', 'CPIAUCSL', 'FEDFUNDS', 'DGS10']
for i, indicator in enumerate(key_indicators):
if indicator in self.data.columns and i < len(axes):
series = self.data[indicator].dropna()
axes[i].plot(series.index, series.values, linewidth=1.5)
axes[i].set_title(f'{indicator} - {self.client.ECONOMIC_INDICATORS.get(indicator, indicator)}')
axes[i].set_xlabel('Date')
axes[i].set_ylabel('Value')
axes[i].grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig(self.output_dir / 'economic_indicators_time_series.png', dpi=300, bbox_inches='tight')
plt.close()
def _plot_correlation_heatmap(self):
"""Plot correlation heatmap"""
if 'statistical_modeling' in self.results:
corr_results = self.results['statistical_modeling'].get('correlation', {})
if 'correlation_matrix' in corr_results:
corr_matrix = corr_results['correlation_matrix']
plt.figure(figsize=(12, 10))
mask = np.triu(np.ones_like(corr_matrix, dtype=bool))
sns.heatmap(corr_matrix, mask=mask, annot=True, cmap='RdBu_r', center=0,
square=True, linewidths=0.5, cbar_kws={"shrink": .8})
plt.title('Economic Indicators Correlation Matrix')
plt.tight_layout()
plt.savefig(self.output_dir / 'correlation_heatmap.png', dpi=300, bbox_inches='tight')
plt.close()
def _plot_forecasting_results(self):
"""Plot forecasting results"""
if 'forecasting' in self.results:
forecasting_results = self.results['forecasting']
n_indicators = len([k for k, v in forecasting_results.items() if 'error' not in v])
if n_indicators > 0:
fig, axes = plt.subplots(n_indicators, 1, figsize=(15, 5*n_indicators))
if n_indicators == 1:
axes = [axes]
i = 0
for indicator, result in forecasting_results.items():
if 'error' not in result and i < len(axes):
series = result.get('series', pd.Series())
forecast = result.get('forecast', {})
if not series.empty and 'forecast' in forecast:
# Plot historical data
axes[i].plot(series.index, series.values, label='Historical', linewidth=2)
# Plot forecast
if hasattr(forecast['forecast'], 'index'):
forecast_values = forecast['forecast']
forecast_index = pd.date_range(
start=series.index[-1] + pd.DateOffset(months=3),
periods=len(forecast_values),
freq='Q'
)
axes[i].plot(forecast_index, forecast_values, 'r--',
label='Forecast', linewidth=2)
axes[i].set_title(f'{indicator} - Forecast')
axes[i].set_xlabel('Date')
axes[i].set_ylabel('Growth Rate')
axes[i].legend()
axes[i].grid(True, alpha=0.3)
i += 1
plt.tight_layout()
plt.savefig(self.output_dir / 'forecasting_results.png', dpi=300, bbox_inches='tight')
plt.close()
def _plot_segmentation_results(self):
"""Plot segmentation results"""
if 'segmentation' in self.results:
segmentation_results = self.results['segmentation']
# Plot time period clusters
if 'time_period_clusters' in segmentation_results:
time_clusters = segmentation_results['time_period_clusters']
if 'error' not in time_clusters and 'pca_data' in time_clusters:
pca_data = time_clusters['pca_data']
cluster_labels = time_clusters['cluster_labels']
plt.figure(figsize=(10, 8))
scatter = plt.scatter(pca_data[:, 0], pca_data[:, 1],
c=cluster_labels, cmap='viridis', alpha=0.7)
plt.colorbar(scatter)
plt.title('Time Period Clustering (PCA)')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.tight_layout()
plt.savefig(self.output_dir / 'time_period_clustering.png', dpi=300, bbox_inches='tight')
plt.close()
def _plot_statistical_diagnostics(self):
"""Plot statistical diagnostics"""
if 'statistical_modeling' in self.results:
stat_results = self.results['statistical_modeling']
# Plot regression diagnostics
if 'regression' in stat_results:
reg_results = stat_results['regression']
for target, result in reg_results.items():
if 'error' not in result and 'residuals' in result:
residuals = result['residuals']
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Residuals vs fitted
predictions = result.get('predictions', [])
if len(predictions) == len(residuals):
axes[0, 0].scatter(predictions, residuals, alpha=0.6)
axes[0, 0].axhline(y=0, color='r', linestyle='--')
axes[0, 0].set_title('Residuals vs Fitted')
axes[0, 0].set_xlabel('Fitted Values')
axes[0, 0].set_ylabel('Residuals')
# Q-Q plot
from scipy import stats
stats.probplot(residuals, dist="norm", plot=axes[0, 1])
axes[0, 1].set_title('Q-Q Plot')
# Histogram of residuals
axes[1, 0].hist(residuals, bins=20, alpha=0.7, edgecolor='black')
axes[1, 0].set_title('Residuals Distribution')
axes[1, 0].set_xlabel('Residuals')
axes[1, 0].set_ylabel('Frequency')
# Time series of residuals
axes[1, 1].plot(residuals.index, residuals.values)
axes[1, 1].axhline(y=0, color='r', linestyle='--')
axes[1, 1].set_title('Residuals Time Series')
axes[1, 1].set_xlabel('Time')
axes[1, 1].set_ylabel('Residuals')
plt.suptitle(f'Regression Diagnostics - {target}')
plt.tight_layout()
plt.savefig(self.output_dir / f'regression_diagnostics_{target}.png',
dpi=300, bbox_inches='tight')
plt.close()
def _generate_comprehensive_report(self):
"""Generate comprehensive analysis report"""
logger.info("Generating comprehensive report")
# Generate individual reports
if 'statistical_modeling' in self.results:
stat_report = self.statistical_modeling.generate_statistical_report(
regression_results=self.results['statistical_modeling'].get('regression'),
correlation_results=self.results['statistical_modeling'].get('correlation'),
causality_results=self.results['statistical_modeling'].get('causality')
)
self.reports['statistical'] = stat_report
if 'forecasting' in self.results:
forecast_report = self.forecaster.generate_forecast_report(self.results['forecasting'])
self.reports['forecasting'] = forecast_report
if 'segmentation' in self.results:
segmentation_report = self.segmentation.generate_segmentation_report(
time_period_clusters=self.results['segmentation'].get('time_period_clusters'),
series_clusters=self.results['segmentation'].get('series_clusters')
)
self.reports['segmentation'] = segmentation_report
# Generate comprehensive report
comprehensive_report = self._generate_comprehensive_summary()
# Save reports
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
with open(self.output_dir / f'comprehensive_analysis_report_{timestamp}.txt', 'w') as f:
f.write(comprehensive_report)
# Save individual reports
for report_name, report_content in self.reports.items():
with open(self.output_dir / f'{report_name}_report_{timestamp}.txt', 'w') as f:
f.write(report_content)
logger.info(f"Reports saved to {self.output_dir}")
def _generate_comprehensive_summary(self) -> str:
"""Generate comprehensive summary report"""
summary = "COMPREHENSIVE ECONOMIC ANALYTICS REPORT\n"
summary += "=" * 60 + "\n\n"
# Executive Summary
summary += "EXECUTIVE SUMMARY\n"
summary += "-" * 30 + "\n"
if 'insights' in self.results:
insights = self.results['insights']
summary += f"Key Findings:\n"
for finding in insights.get('key_findings', []):
summary += f" • {finding}\n"
summary += "\n"
# Data Overview
summary += "DATA OVERVIEW\n"
summary += "-" * 30 + "\n"
summary += self.client.generate_data_summary(self.data)
# Analysis Results Summary
summary += "ANALYSIS RESULTS SUMMARY\n"
summary += "-" * 30 + "\n"
# Forecasting Summary
if 'forecasting' in self.results:
summary += "Forecasting Results:\n"
forecasting_results = self.results['forecasting']
for indicator, result in forecasting_results.items():
if 'error' not in result:
backtest = result.get('backtest', {})
if 'error' not in backtest:
mape = backtest.get('mape', 0)
summary += f" • {indicator}: MAPE = {mape:.2f}%\n"
summary += "\n"
# Segmentation Summary
if 'segmentation' in self.results:
summary += "Segmentation Results:\n"
segmentation_results = self.results['segmentation']
if 'time_period_clusters' in segmentation_results:
time_clusters = segmentation_results['time_period_clusters']
if 'error' not in time_clusters:
n_clusters = time_clusters.get('n_clusters', 0)
summary += f" • Time periods clustered into {n_clusters} economic regimes\n"
if 'series_clusters' in segmentation_results:
series_clusters = segmentation_results['series_clusters']
if 'error' not in series_clusters:
n_clusters = series_clusters.get('n_clusters', 0)
summary += f" • Economic series clustered into {n_clusters} groups\n"
summary += "\n"
# Statistical Summary
if 'statistical_modeling' in self.results:
summary += "Statistical Analysis Results:\n"
stat_results = self.results['statistical_modeling']
if 'correlation' in stat_results:
corr_results = stat_results['correlation']
significant_correlations = corr_results.get('significant_correlations', [])
summary += f" • {len(significant_correlations)} significant correlations identified\n"
if 'regression' in stat_results:
reg_results = stat_results['regression']
successful_models = [k for k, v in reg_results.items() if 'error' not in v]
summary += f" • {len(successful_models)} regression models successfully fitted\n"
summary += "\n"
# Key Insights
if 'insights' in self.results:
insights = self.results['insights']
summary += "KEY INSIGHTS\n"
summary += "-" * 30 + "\n"
for insight_type, insight_list in insights.items():
if insight_type != 'key_findings' and insight_list:
summary += f"{insight_type.replace('_', ' ').title()}:\n"
for insight in insight_list[:3]: # Top 3 insights
summary += f" • {insight}\n"
summary += "\n"
summary += "=" * 60 + "\n"
summary += f"Report generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
summary += f"Analysis period: {self.data.index.min().strftime('%Y-%m')} to {self.data.index.max().strftime('%Y-%m')}\n"
return summary |