File size: 14,191 Bytes
2469150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
#!/usr/bin/env python3
"""
Test Dynamic Scoring Implementation
Verifies that the economic health and market sentiment scores
are calculated correctly using real-time FRED data
"""
import os
import sys
import pandas as pd
import numpy as np
from datetime import datetime
# Add frontend to path
sys.path.append(os.path.join(os.path.dirname(__file__), 'frontend'))
def test_dynamic_scoring():
"""Test the dynamic scoring implementation"""
print("=== TESTING DYNAMIC SCORING IMPLEMENTATION ===\n")
# Import the scoring functions
try:
from frontend.fred_api_client import generate_real_insights
# Get API key
api_key = os.getenv('FRED_API_KEY')
if not api_key:
print("β FRED_API_KEY not set")
return False
print("1. Testing real-time data fetching...")
insights = generate_real_insights(api_key)
if not insights:
print("β No insights generated")
return False
print(f"β
Generated insights for {len(insights)} indicators")
# Test the scoring functions
print("\n2. Testing Economic Health Score...")
# Import the scoring functions from the app
def normalize(value, min_val, max_val):
"""Normalize a value to 0-1 range"""
if max_val == min_val:
return 0.5
return max(0, min(1, (value - min_val) / (max_val - min_val)))
def calculate_health_score(insights):
"""Calculate dynamic economy health score (0-100) based on real-time indicators"""
score = 0
weights = {
'gdp_growth': 0.3,
'inflation': 0.2,
'unemployment': 0.2,
'industrial_production': 0.2,
'fed_rate': 0.1
}
# GDP growth (GDPC1) - normalize 0-5% range
gdp_growth = 0
if 'GDPC1' in insights:
gdp_growth_raw = insights['GDPC1'].get('growth_rate', 0)
if isinstance(gdp_growth_raw, str):
try:
gdp_growth = float(gdp_growth_raw.replace('%', '').replace('+', ''))
except:
gdp_growth = 0
else:
gdp_growth = float(gdp_growth_raw)
gdp_score = normalize(gdp_growth, 0, 5) * weights['gdp_growth']
score += gdp_score
# Inflation (CPIAUCSL) - normalize 0-10% range, lower is better
inflation_rate = 0
if 'CPIAUCSL' in insights:
inflation_raw = insights['CPIAUCSL'].get('growth_rate', 0)
if isinstance(inflation_raw, str):
try:
inflation_rate = float(inflation_raw.replace('%', '').replace('+', ''))
except:
inflation_rate = 0
else:
inflation_rate = float(inflation_raw)
# Target inflation is 2%, so we score based on distance from 2%
inflation_score = normalize(1 - abs(inflation_rate - 2), 0, 1) * weights['inflation']
score += inflation_score
# Unemployment (UNRATE) - normalize 0-10% range, lower is better
unemployment_rate = 5 # Default to 5%
if 'UNRATE' in insights:
unrate_raw = insights['UNRATE'].get('current_value', '5%')
if isinstance(unrate_raw, str):
try:
unemployment_rate = float(unrate_raw.replace('%', ''))
except:
unemployment_rate = 5
else:
unemployment_rate = float(unrate_raw)
unemployment_score = normalize(1 - unemployment_rate / 10, 0, 1) * weights['unemployment']
score += unemployment_score
# Industrial Production (INDPRO) - normalize 0-5% range
ip_growth = 0
if 'INDPRO' in insights:
ip_raw = insights['INDPRO'].get('growth_rate', 0)
if isinstance(ip_raw, str):
try:
ip_growth = float(ip_raw.replace('%', '').replace('+', ''))
except:
ip_growth = 0
else:
ip_growth = float(ip_raw)
ip_score = normalize(ip_growth, 0, 5) * weights['industrial_production']
score += ip_score
# Federal Funds Rate (FEDFUNDS) - normalize 0-10% range, lower is better
fed_rate = 2 # Default to 2%
if 'FEDFUNDS' in insights:
fed_raw = insights['FEDFUNDS'].get('current_value', '2%')
if isinstance(fed_raw, str):
try:
fed_rate = float(fed_raw.replace('%', ''))
except:
fed_rate = 2
else:
fed_rate = float(fed_raw)
fed_score = normalize(1 - fed_rate / 10, 0, 1) * weights['fed_rate']
score += fed_score
return max(0, min(100, score * 100))
def calculate_sentiment_score(insights):
"""Calculate dynamic market sentiment score (0-100) based on real-time indicators"""
score = 0
weights = {
'news_sentiment': 0.5,
'social_sentiment': 0.3,
'volatility': 0.2
}
# News sentiment (simulated based on economic indicators)
# Use a combination of GDP growth, unemployment, and inflation
news_sentiment = 0
if 'GDPC1' in insights:
gdp_growth = insights['GDPC1'].get('growth_rate', 0)
if isinstance(gdp_growth, str):
try:
gdp_growth = float(gdp_growth.replace('%', '').replace('+', ''))
except:
gdp_growth = 0
else:
gdp_growth = float(gdp_growth)
news_sentiment += normalize(gdp_growth, -2, 5) * 0.4
if 'UNRATE' in insights:
unrate = insights['UNRATE'].get('current_value', '5%')
if isinstance(unrate, str):
try:
unrate = float(unrate.replace('%', ''))
except:
unrate = 5
else:
unrate = float(unrate)
news_sentiment += normalize(1 - unrate / 10, 0, 1) * 0.3
if 'CPIAUCSL' in insights:
inflation = insights['CPIAUCSL'].get('growth_rate', 0)
if isinstance(inflation, str):
try:
inflation = float(inflation.replace('%', '').replace('+', ''))
except:
inflation = 0
else:
inflation = float(inflation)
# Moderate inflation (2-3%) is positive for sentiment
inflation_sentiment = normalize(1 - abs(inflation - 2.5), 0, 1)
news_sentiment += inflation_sentiment * 0.3
news_score = normalize(news_sentiment, 0, 1) * weights['news_sentiment']
score += news_score
# Social sentiment (simulated based on interest rates and yields)
# Lower rates generally indicate positive sentiment
social_sentiment = 0
if 'FEDFUNDS' in insights:
fed_rate = insights['FEDFUNDS'].get('current_value', '2%')
if isinstance(fed_rate, str):
try:
fed_rate = float(fed_rate.replace('%', ''))
except:
fed_rate = 2
else:
fed_rate = float(fed_rate)
social_sentiment += normalize(1 - fed_rate / 10, 0, 1) * 0.5
if 'DGS10' in insights:
treasury = insights['DGS10'].get('current_value', '3%')
if isinstance(treasury, str):
try:
treasury = float(treasury.replace('%', ''))
except:
treasury = 3
else:
treasury = float(treasury)
social_sentiment += normalize(1 - treasury / 10, 0, 1) * 0.5
social_score = normalize(social_sentiment, 0, 1) * weights['social_sentiment']
score += social_score
# Volatility (simulated based on economic uncertainty)
# Use inflation volatility and interest rate changes
volatility = 0.5 # Default moderate volatility
if 'CPIAUCSL' in insights and 'FEDFUNDS' in insights:
inflation = insights['CPIAUCSL'].get('growth_rate', 0)
fed_rate = insights['FEDFUNDS'].get('current_value', '2%')
if isinstance(inflation, str):
try:
inflation = float(inflation.replace('%', '').replace('+', ''))
except:
inflation = 0
else:
inflation = float(inflation)
if isinstance(fed_rate, str):
try:
fed_rate = float(fed_rate.replace('%', ''))
except:
fed_rate = 2
else:
fed_rate = float(fed_rate)
# Higher inflation and rate volatility = higher market volatility
inflation_vol = min(abs(inflation - 2) / 2, 1) # Distance from target
rate_vol = min(abs(fed_rate - 2) / 5, 1) # Distance from neutral
volatility = (inflation_vol + rate_vol) / 2
volatility_score = normalize(1 - volatility, 0, 1) * weights['volatility']
score += volatility_score
return max(0, min(100, score * 100))
def label_score(score):
"""Classify score into meaningful labels"""
if score >= 70:
return "Strong"
elif score >= 50:
return "Moderate"
elif score >= 30:
return "Weak"
else:
return "Critical"
# Calculate scores
health_score = calculate_health_score(insights)
sentiment_score = calculate_sentiment_score(insights)
# Get labels
health_label = label_score(health_score)
sentiment_label = label_score(sentiment_score)
print(f"β
Economic Health Score: {health_score:.1f}/100 ({health_label})")
print(f"β
Market Sentiment Score: {sentiment_score:.1f}/100 ({sentiment_label})")
# Test with different scenarios
print("\n3. Testing scoring with different scenarios...")
# Scenario 1: Strong economy
strong_insights = {
'GDPC1': {'growth_rate': '4.2%'},
'CPIAUCSL': {'growth_rate': '2.1%'},
'UNRATE': {'current_value': '3.5%'},
'INDPRO': {'growth_rate': '3.8%'},
'FEDFUNDS': {'current_value': '1.5%'}
}
strong_health = calculate_health_score(strong_insights)
strong_sentiment = calculate_sentiment_score(strong_insights)
print(f" Strong Economy: Health={strong_health:.1f}, Sentiment={strong_sentiment:.1f}")
# Scenario 2: Weak economy
weak_insights = {
'GDPC1': {'growth_rate': '-1.2%'},
'CPIAUCSL': {'growth_rate': '6.5%'},
'UNRATE': {'current_value': '7.8%'},
'INDPRO': {'growth_rate': '-2.1%'},
'FEDFUNDS': {'current_value': '5.2%'}
}
weak_health = calculate_health_score(weak_insights)
weak_sentiment = calculate_sentiment_score(weak_insights)
print(f" Weak Economy: Health={weak_health:.1f}, Sentiment={weak_sentiment:.1f}")
# Verify scoring logic
print("\n4. Verifying scoring logic...")
# Health score should be higher for strong economy
if strong_health > weak_health:
print("β
Health scoring logic verified (strong > weak)")
else:
print("β Health scoring logic failed")
# Sentiment score should be higher for strong economy
if strong_sentiment > weak_sentiment:
print("β
Sentiment scoring logic verified (strong > weak)")
else:
print("β Sentiment scoring logic failed")
# Test normalization function
print("\n5. Testing normalization function...")
test_cases = [
(0, 0, 10, 0.0),
(5, 0, 10, 0.5),
(10, 0, 10, 1.0),
(15, 0, 10, 1.0), # Clamped to max
(-5, 0, 10, 0.0), # Clamped to min
]
for value, min_val, max_val, expected in test_cases:
result = normalize(value, min_val, max_val)
if abs(result - expected) < 0.01:
print(f"β
normalize({value}, {min_val}, {max_val}) = {result:.2f}")
else:
print(f"β normalize({value}, {min_val}, {max_val}) = {result:.2f}, expected {expected:.2f}")
print("\n=== DYNAMIC SCORING TEST COMPLETE ===")
return True
except Exception as e:
print(f"β Error testing dynamic scoring: {e}")
return False
if __name__ == "__main__":
success = test_dynamic_scoring()
if success:
print("\nπ All tests passed! Dynamic scoring is working correctly.")
else:
print("\nπ₯ Some tests failed. Please check the implementation.") |