File size: 3,681 Bytes
2469150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
#!/usr/bin/env python3
"""
Test script to verify mathematical fixes module
"""
import sys
import os
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
# Add the project root to Python path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
def test_mathematical_fixes():
"""Test the mathematical fixes module"""
print("π Testing mathematical fixes module...")
try:
from src.analysis.mathematical_fixes import MathematicalFixes
# Create test data
dates = pd.date_range('2020-01-01', periods=100, freq='ME')
test_data = pd.DataFrame({
'GDPC1': np.random.normal(22000, 1000, 100), # Billions
'INDPRO': np.random.normal(100, 5, 100), # Index
'CPIAUCSL': np.random.normal(250, 10, 100), # Index
'FEDFUNDS': np.random.normal(2, 0.5, 100), # Percent
'PAYEMS': np.random.normal(150000, 5000, 100) # Thousands
}, index=dates)
print("β
Test data created successfully")
# Initialize mathematical fixes
fixes = MathematicalFixes()
print("β
MathematicalFixes initialized successfully")
# Test unit normalization
normalized_data = fixes.normalize_units(test_data)
print(f"β
Unit normalization completed. Shape: {normalized_data.shape}")
# Test frequency alignment
aligned_data = fixes.align_frequencies(test_data, target_freq='QE')
print(f"β
Frequency alignment completed. Shape: {aligned_data.shape}")
# Test growth rate calculation
growth_data = fixes.calculate_growth_rates(test_data, method='pct_change')
print(f"β
Growth rate calculation completed. Shape: {growth_data.shape}")
# Test stationarity enforcement
stationary_data, diff_info = fixes.enforce_stationarity(growth_data)
print(f"β
Stationarity enforcement completed. Shape: {stationary_data.shape}")
print(f"β
Differencing info: {len(diff_info)} indicators processed")
# Test comprehensive fixes
fixed_data, fix_info = fixes.apply_comprehensive_fixes(
test_data,
target_freq='QE',
growth_method='pct_change',
normalize_units=True
)
print(f"β
Comprehensive fixes applied. Final shape: {fixed_data.shape}")
print(f"β
Applied fixes: {fix_info['fixes_applied']}")
# Test safe error metrics
actual = np.array([1, 2, 3, 4, 5])
forecast = np.array([1.1, 1.9, 3.1, 3.9, 5.1])
mape = fixes.safe_mape(actual, forecast)
mae = fixes.safe_mae(actual, forecast)
rmse = fixes.safe_rmse(actual, forecast)
print(f"β
Error metrics calculated - MAPE: {mape:.2f}%, MAE: {mae:.2f}, RMSE: {rmse:.2f}")
# Test forecast period scaling
for indicator in ['GDPC1', 'INDPRO', 'FEDFUNDS']:
scaled_periods = fixes.scale_forecast_periods(4, indicator, test_data)
print(f"β
{indicator}: scaled forecast periods from 4 to {scaled_periods}")
print("\nπ All mathematical fixes tests passed successfully!")
return True
except Exception as e:
print(f"β Mathematical fixes test failed: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = test_mathematical_fixes()
if success:
print("\nβ
Mathematical fixes module is working correctly!")
else:
print("\nβ Mathematical fixes module has issues.") |