File size: 5,965 Bytes
2b395f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Streamlit Cloud Deployment Guide

This guide explains how to deploy the FRED ML frontend to Streamlit Cloud.

## Prerequisites

1. **GitHub Account**: Your code must be in a GitHub repository
2. **Streamlit Cloud Account**: Sign up at [streamlit.io/cloud](https://streamlit.io/cloud)
3. **AWS Credentials**: Configured for S3 and Lambda access

## Step 1: Prepare Your Repository

### Repository Structure

Ensure your repository has the following structure:

```
FRED_ML/
β”œβ”€β”€ frontend/
β”‚   β”œβ”€β”€ app.py
β”‚   └── .streamlit/
β”‚       └── config.toml
β”œβ”€β”€ requirements.txt
└── README.md
```

### Update requirements.txt

Make sure your `requirements.txt` includes Streamlit dependencies:

```txt
streamlit==1.28.1
plotly==5.17.0
altair==5.1.2
boto3==1.34.0
pandas==2.1.4
numpy==1.24.3
```

## Step 2: Configure Streamlit App

### Main App File

Your `frontend/app.py` should be the main entry point. Streamlit Cloud will automatically detect and run this file.

### Streamlit Configuration

The `.streamlit/config.toml` file should be configured for production:

```toml
[global]
developmentMode = false

[server]
headless = true
port = 8501
enableCORS = false
enableXsrfProtection = false

[browser]
gatherUsageStats = false
```

## Step 3: Deploy to Streamlit Cloud

### 1. Connect Repository

1. Go to [share.streamlit.io](https://share.streamlit.io)
2. Sign in with your GitHub account
3. Click "New app"
4. Select your repository
5. Set the main file path to `frontend/app.py`

### 2. Configure Environment Variables

In the Streamlit Cloud dashboard, add these environment variables:

```bash
# AWS Configuration
AWS_ACCESS_KEY_ID=your_aws_access_key
AWS_SECRET_ACCESS_KEY=your_aws_secret_key
AWS_DEFAULT_REGION=us-west-2

# Application Configuration
S3_BUCKET=fredmlv1
LAMBDA_FUNCTION=fred-ml-processor
```

### 3. Advanced Settings

- **Python version**: 3.9 or higher
- **Dependencies**: Use `requirements.txt` from root directory
- **Main file path**: `frontend/app.py`

## Step 4: Environment Variables Setup

### AWS Credentials

Create an IAM user with minimal permissions:

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "s3:GetObject",
                "s3:ListBucket"
            ],
            "Resource": [
                "arn:aws:s3:::fredmlv1",
                "arn:aws:s3:::fredmlv1/*"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [
                "lambda:InvokeFunction"
            ],
            "Resource": "arn:aws:lambda:us-east-1:*:function:fred-ml-processor"
        }
    ]
}
```

### Application Variables

| Variable | Description | Example |
|----------|-------------|---------|
| `S3_BUCKET` | S3 bucket name | `fredmlv1` |
| `LAMBDA_FUNCTION` | Lambda function name | `fred-ml-processor` |
| `AWS_ACCESS_KEY_ID` | AWS access key | `AKIA...` |
| `AWS_SECRET_ACCESS_KEY` | AWS secret key | `...` |
| `AWS_DEFAULT_REGION` | AWS region | `us-east-1` |

## Step 5: Deploy and Test

### 1. Deploy

1. Click "Deploy" in Streamlit Cloud
2. Wait for the build to complete
3. Check the deployment logs for any errors

### 2. Test the Application

1. Open the provided Streamlit URL
2. Navigate to the "Analysis" page
3. Select indicators and run a test analysis
4. Check the "Reports" page for results

### 3. Monitor Logs

- Check Streamlit Cloud logs for frontend issues
- Monitor AWS CloudWatch logs for Lambda function issues
- Verify S3 bucket for generated reports

## Troubleshooting

### Common Issues

#### 1. Import Errors

**Problem**: Module not found errors
**Solution**: Ensure all dependencies are in `requirements.txt`

#### 2. AWS Credentials

**Problem**: Access denied errors
**Solution**: Verify IAM permissions and credentials

#### 3. S3 Access

**Problem**: Cannot access S3 bucket
**Solution**: Check bucket name and IAM permissions

#### 4. Lambda Invocation

**Problem**: Lambda function not responding
**Solution**: Verify function name and permissions

### Debug Commands

```bash
# Test AWS credentials
aws sts get-caller-identity

# Test S3 access
aws s3 ls s3://fredmlv1/

# Test Lambda function
aws lambda invoke --function-name fred-ml-processor --payload '{}' response.json
```

## Production Considerations

### Security

1. **Use IAM Roles**: Instead of access keys when possible
2. **Rotate Credentials**: Regularly update AWS credentials
3. **Monitor Access**: Use CloudTrail to monitor API calls

### Performance

1. **Caching**: Use Streamlit caching for expensive operations
2. **Connection Pooling**: Reuse AWS connections
3. **Error Handling**: Implement proper error handling

### Monitoring

1. **Streamlit Cloud Metrics**: Monitor app performance
2. **AWS CloudWatch**: Monitor Lambda and S3 usage
3. **Custom Alerts**: Set up alerts for failures

## Custom Domain (Optional)

If you want to use a custom domain:

1. **Domain Setup**: Configure your domain in Streamlit Cloud
2. **SSL Certificate**: Streamlit Cloud handles SSL automatically
3. **DNS Configuration**: Update your DNS records

## Cost Optimization

### Streamlit Cloud

- **Free Tier**: 1 app, limited usage
- **Team Plan**: Multiple apps, more resources
- **Enterprise**: Custom pricing

### AWS Costs

- **Lambda**: Pay per invocation
- **S3**: Pay per storage and requests
- **EventBridge**: Minimal cost for scheduling

## Support

### Streamlit Cloud Support

- **Documentation**: [docs.streamlit.io](https://docs.streamlit.io)
- **Community**: [discuss.streamlit.io](https://discuss.streamlit.io)
- **GitHub**: [github.com/streamlit/streamlit](https://github.com/streamlit/streamlit)

### AWS Support

- **Documentation**: [docs.aws.amazon.com](https://docs.aws.amazon.com)
- **Support Center**: [aws.amazon.com/support](https://aws.amazon.com/support)

---

**Next Steps**: After deployment, test the complete workflow and monitor for any issues.