File size: 13,496 Bytes
6ce20d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""
FRED ML - Demo Data Generator
Provides realistic economic data and senior data scientist insights
"""

import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import random

def generate_economic_data():
    """Generate realistic economic data for demonstration"""
    
    # Generate date range (last 5 years)
    end_date = datetime.now()
    start_date = end_date - timedelta(days=365*5)
    dates = pd.date_range(start=start_date, end=end_date, freq='M')
    
    # Base values and trends for realistic economic data
    base_values = {
        'GDPC1': 20000,  # Real GDP in billions
        'INDPRO': 100,    # Industrial Production Index
        'RSAFS': 500,     # Retail Sales in billions
        'CPIAUCSL': 250,  # Consumer Price Index
        'FEDFUNDS': 2.5,  # Federal Funds Rate
        'DGS10': 3.0,     # 10-Year Treasury Rate
        'UNRATE': 4.0,    # Unemployment Rate
        'PAYEMS': 150000, # Total Nonfarm Payrolls (thousands)
        'PCE': 18000,     # Personal Consumption Expenditures
        'M2SL': 21000,    # M2 Money Stock
        'TCU': 75,        # Capacity Utilization
        'DEXUSEU': 1.1    # US/Euro Exchange Rate
    }
    
    # Growth rates and volatility for realistic trends
    growth_rates = {
        'GDPC1': 0.02,    # 2% annual growth
        'INDPRO': 0.015,  # 1.5% annual growth
        'RSAFS': 0.03,    # 3% annual growth
        'CPIAUCSL': 0.025, # 2.5% annual inflation
        'FEDFUNDS': 0.0,  # Policy rate
        'DGS10': 0.0,     # Market rate
        'UNRATE': 0.0,    # Unemployment
        'PAYEMS': 0.015,  # Employment growth
        'PCE': 0.025,     # Consumption growth
        'M2SL': 0.04,     # Money supply growth
        'TCU': 0.005,     # Capacity utilization
        'DEXUSEU': 0.0    # Exchange rate
    }
    
    # Generate realistic data
    data = {'Date': dates}
    
    for indicator, base_value in base_values.items():
        # Create trend with realistic economic cycles
        trend = np.linspace(0, len(dates) * growth_rates[indicator], len(dates))
        
        # Add business cycle effects
        cycle = 0.05 * np.sin(2 * np.pi * np.arange(len(dates)) / 48)  # 4-year cycle
        
        # Add random noise
        noise = np.random.normal(0, 0.02, len(dates))
        
        # Combine components
        values = base_value * (1 + trend + cycle + noise)
        
        # Ensure realistic bounds
        if indicator in ['UNRATE', 'FEDFUNDS', 'DGS10']:
            values = np.clip(values, 0, 20)
        elif indicator in ['CPIAUCSL']:
            values = np.clip(values, 200, 350)
        elif indicator in ['TCU']:
            values = np.clip(values, 60, 90)
        
        data[indicator] = values
    
    return pd.DataFrame(data)

def generate_insights():
    """Generate senior data scientist insights"""
    
    insights = {
        'GDPC1': {
            'current_value': '$21,847.2B',
            'growth_rate': '+2.1%',
            'trend': 'Moderate growth',
            'forecast': '+2.3% next quarter',
            'key_insight': 'GDP growth remains resilient despite monetary tightening, supported by strong consumer spending and business investment.',
            'risk_factors': ['Inflation persistence', 'Geopolitical tensions', 'Supply chain disruptions'],
            'opportunities': ['Technology sector expansion', 'Infrastructure investment', 'Green energy transition']
        },
        'INDPRO': {
            'current_value': '102.4',
            'growth_rate': '+0.8%',
            'trend': 'Recovery phase',
            'forecast': '+0.6% next month',
            'key_insight': 'Industrial production shows signs of recovery, with manufacturing leading the rebound. Capacity utilization improving.',
            'risk_factors': ['Supply chain bottlenecks', 'Labor shortages', 'Energy price volatility'],
            'opportunities': ['Advanced manufacturing', 'Automation adoption', 'Reshoring initiatives']
        },
        'RSAFS': {
            'current_value': '$579.2B',
            'growth_rate': '+3.2%',
            'trend': 'Strong consumer spending',
            'forecast': '+2.8% next month',
            'key_insight': 'Retail sales demonstrate robust consumer confidence, with e-commerce continuing to gain market share.',
            'risk_factors': ['Inflation impact on purchasing power', 'Interest rate sensitivity', 'Supply chain issues'],
            'opportunities': ['Digital transformation', 'Omnichannel retail', 'Personalization']
        },
        'CPIAUCSL': {
            'current_value': '312.3',
            'growth_rate': '+3.2%',
            'trend': 'Moderating inflation',
            'forecast': '+2.9% next month',
            'key_insight': 'Inflation continues to moderate from peak levels, with core CPI showing signs of stabilization.',
            'risk_factors': ['Energy price volatility', 'Wage pressure', 'Supply chain costs'],
            'opportunities': ['Productivity improvements', 'Technology adoption', 'Supply chain optimization']
        },
        'FEDFUNDS': {
            'current_value': '5.25%',
            'growth_rate': '0%',
            'trend': 'Stable policy rate',
            'forecast': '5.25% next meeting',
            'key_insight': 'Federal Reserve maintains restrictive stance to combat inflation, with policy rate at 22-year high.',
            'risk_factors': ['Inflation persistence', 'Economic slowdown', 'Financial stability'],
            'opportunities': ['Policy normalization', 'Inflation targeting', 'Financial regulation']
        },
        'DGS10': {
            'current_value': '4.12%',
            'growth_rate': '-0.15%',
            'trend': 'Declining yields',
            'forecast': '4.05% next week',
            'key_insight': '10-year Treasury yields declining on economic uncertainty and flight to quality. Yield curve inversion persists.',
            'risk_factors': ['Economic recession', 'Inflation expectations', 'Geopolitical risks'],
            'opportunities': ['Bond market opportunities', 'Portfolio diversification', 'Interest rate hedging']
        },
        'UNRATE': {
            'current_value': '3.7%',
            'growth_rate': '0%',
            'trend': 'Stable employment',
            'forecast': '3.6% next month',
            'key_insight': 'Unemployment rate remains near historic lows, indicating tight labor market conditions.',
            'risk_factors': ['Labor force participation', 'Skills mismatch', 'Economic slowdown'],
            'opportunities': ['Workforce development', 'Technology training', 'Remote work adoption']
        },
        'PAYEMS': {
            'current_value': '156,847K',
            'growth_rate': '+1.2%',
            'trend': 'Steady job growth',
            'forecast': '+0.8% next month',
            'key_insight': 'Nonfarm payrolls continue steady growth, with healthcare and technology sectors leading job creation.',
            'risk_factors': ['Labor shortages', 'Wage pressure', 'Economic uncertainty'],
            'opportunities': ['Skills development', 'Industry partnerships', 'Immigration policy']
        },
        'PCE': {
            'current_value': '$19,847B',
            'growth_rate': '+2.8%',
            'trend': 'Strong consumption',
            'forecast': '+2.5% next quarter',
            'key_insight': 'Personal consumption expenditures show resilience, supported by strong labor market and wage growth.',
            'risk_factors': ['Inflation impact', 'Interest rate sensitivity', 'Consumer confidence'],
            'opportunities': ['Digital commerce', 'Experience economy', 'Sustainable consumption']
        },
        'M2SL': {
            'current_value': '$20,847B',
            'growth_rate': '+2.1%',
            'trend': 'Moderate growth',
            'forecast': '+1.8% next month',
            'key_insight': 'Money supply growth moderating as Federal Reserve tightens monetary policy to combat inflation.',
            'risk_factors': ['Inflation expectations', 'Financial stability', 'Economic growth'],
            'opportunities': ['Digital payments', 'Financial innovation', 'Monetary policy']
        },
        'TCU': {
            'current_value': '78.4%',
            'growth_rate': '+0.3%',
            'trend': 'Improving utilization',
            'forecast': '78.7% next quarter',
            'key_insight': 'Capacity utilization improving as supply chain issues resolve and demand remains strong.',
            'risk_factors': ['Supply chain disruptions', 'Labor shortages', 'Energy constraints'],
            'opportunities': ['Efficiency improvements', 'Technology adoption', 'Process optimization']
        },
        'DEXUSEU': {
            'current_value': '1.087',
            'growth_rate': '+0.2%',
            'trend': 'Stable exchange rate',
            'forecast': '1.085 next week',
            'key_insight': 'US dollar remains strong against euro, supported by relative economic performance and interest rate differentials.',
            'risk_factors': ['Economic divergence', 'Geopolitical tensions', 'Trade policies'],
            'opportunities': ['Currency hedging', 'International trade', 'Investment diversification']
        }
    }
    
    return insights

def generate_forecast_data():
    """Generate forecast data with confidence intervals"""
    
    # Generate future dates (next 4 quarters)
    last_date = datetime.now()
    future_dates = pd.date_range(start=last_date + timedelta(days=90), periods=4, freq='Q')
    
    forecasts = {}
    
    # Realistic forecast scenarios
    forecast_scenarios = {
        'GDPC1': {'growth': 0.02, 'volatility': 0.01},  # 2% quarterly growth
        'INDPRO': {'growth': 0.015, 'volatility': 0.008},  # 1.5% monthly growth
        'RSAFS': {'growth': 0.025, 'volatility': 0.012},  # 2.5% monthly growth
        'CPIAUCSL': {'growth': 0.006, 'volatility': 0.003},  # 0.6% monthly inflation
        'FEDFUNDS': {'growth': 0.0, 'volatility': 0.25},  # Stable policy rate
        'DGS10': {'growth': -0.001, 'volatility': 0.15},  # Slight decline
        'UNRATE': {'growth': -0.001, 'volatility': 0.1},  # Slight decline
        'PAYEMS': {'growth': 0.008, 'volatility': 0.005},  # 0.8% monthly growth
        'PCE': {'growth': 0.02, 'volatility': 0.01},  # 2% quarterly growth
        'M2SL': {'growth': 0.015, 'volatility': 0.008},  # 1.5% monthly growth
        'TCU': {'growth': 0.003, 'volatility': 0.002},  # 0.3% quarterly growth
        'DEXUSEU': {'growth': -0.001, 'volatility': 0.02}  # Slight decline
    }
    
    for indicator, scenario in forecast_scenarios.items():
        base_value = 100  # Normalized base value
        
        # Generate forecast values
        forecast_values = []
        confidence_intervals = []
        
        for i in range(4):
            # Add trend and noise
            value = base_value * (1 + scenario['growth'] * (i + 1) + 
                                np.random.normal(0, scenario['volatility']))
            
            # Generate confidence interval
            lower = value * (1 - 0.05 - np.random.uniform(0, 0.03))
            upper = value * (1 + 0.05 + np.random.uniform(0, 0.03))
            
            forecast_values.append(value)
            confidence_intervals.append({'lower': lower, 'upper': upper})
        
        forecasts[indicator] = {
            'forecast': forecast_values,
            'confidence_intervals': pd.DataFrame(confidence_intervals),
            'dates': future_dates
        }
    
    return forecasts

def generate_correlation_matrix():
    """Generate realistic correlation matrix"""
    
    # Define realistic correlations between economic indicators
    correlations = {
        'GDPC1': {'INDPRO': 0.85, 'RSAFS': 0.78, 'CPIAUCSL': 0.45, 'FEDFUNDS': -0.32, 'DGS10': -0.28},
        'INDPRO': {'RSAFS': 0.72, 'CPIAUCSL': 0.38, 'FEDFUNDS': -0.25, 'DGS10': -0.22},
        'RSAFS': {'CPIAUCSL': 0.42, 'FEDFUNDS': -0.28, 'DGS10': -0.25},
        'CPIAUCSL': {'FEDFUNDS': 0.65, 'DGS10': 0.58},
        'FEDFUNDS': {'DGS10': 0.82}
    }
    
    # Create correlation matrix
    indicators = ['GDPC1', 'INDPRO', 'RSAFS', 'CPIAUCSL', 'FEDFUNDS', 'DGS10', 'UNRATE', 'PAYEMS', 'PCE', 'M2SL', 'TCU', 'DEXUSEU']
    corr_matrix = pd.DataFrame(index=indicators, columns=indicators)
    
    # Fill diagonal with 1
    for indicator in indicators:
        corr_matrix.loc[indicator, indicator] = 1.0
    
    # Fill with realistic correlations
    for i, indicator1 in enumerate(indicators):
        for j, indicator2 in enumerate(indicators):
            if i != j:
                if indicator1 in correlations and indicator2 in correlations[indicator1]:
                    corr_matrix.loc[indicator1, indicator2] = correlations[indicator1][indicator2]
                elif indicator2 in correlations and indicator1 in correlations[indicator2]:
                    corr_matrix.loc[indicator1, indicator2] = correlations[indicator2][indicator1]
                else:
                    # Generate random correlation between -0.3 and 0.3
                    corr_matrix.loc[indicator1, indicator2] = np.random.uniform(-0.3, 0.3)
    
    return corr_matrix

def get_demo_data():
    """Get comprehensive demo data"""
    return {
        'economic_data': generate_economic_data(),
        'insights': generate_insights(),
        'forecasts': generate_forecast_data(),
        'correlation_matrix': generate_correlation_matrix()
    }