File size: 17,505 Bytes
6ce20d9 2469150 6ce20d9 2469150 6ce20d9 2469150 6ce20d9 2469150 6ce20d9 2469150 6ce20d9 2469150 6ce20d9 2469150 6ce20d9 2469150 6ce20d9 2469150 6ce20d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
"""
FRED ML - Real FRED API Client
Fetches actual economic data from the Federal Reserve Economic Data API
"""
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import requests
import json
from typing import Dict, List, Optional, Any
import asyncio
import aiohttp
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
class FREDAPIClient:
"""Real FRED API client for fetching economic data"""
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://api.stlouisfed.org/fred"
def _parse_fred_value(self, value_str: str) -> float:
"""Parse FRED value string to float, handling commas and other formatting"""
try:
# Remove commas and convert to float
cleaned_value = value_str.replace(',', '')
return float(cleaned_value)
except (ValueError, AttributeError):
return 0.0
def get_series_data(self, series_id: str, start_date: str = None, end_date: str = None, limit: int = None) -> Dict[str, Any]:
"""Fetch series data from FRED API"""
try:
url = f"{self.base_url}/series/observations"
params = {
'series_id': series_id,
'api_key': self.api_key,
'file_type': 'json',
'sort_order': 'desc' # Get latest data first
}
if start_date:
params['observation_start'] = start_date
if end_date:
params['observation_end'] = end_date
if limit:
params['limit'] = limit
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
return data
except Exception as e:
return {'error': f"Failed to fetch {series_id}: {str(e)}"}
def get_series_info(self, series_id: str) -> Dict[str, Any]:
"""Fetch series information from FRED API"""
try:
url = f"{self.base_url}/series"
params = {
'series_id': series_id,
'api_key': self.api_key,
'file_type': 'json'
}
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
return data
except Exception as e:
return {'error': f"Failed to fetch series info for {series_id}: {str(e)}"}
def get_economic_data(self, series_list: List[str], start_date: str = None, end_date: str = None) -> pd.DataFrame:
"""Fetch multiple economic series and combine into DataFrame"""
all_data = {}
for series_id in series_list:
series_data = self.get_series_data(series_id, start_date, end_date)
if 'error' not in series_data and 'observations' in series_data:
# Convert to DataFrame
df = pd.DataFrame(series_data['observations'])
df['date'] = pd.to_datetime(df['date'])
# Use the new parsing function
df['value'] = df['value'].apply(self._parse_fred_value)
df = df.set_index('date')[['value']].rename(columns={'value': series_id})
all_data[series_id] = df
if all_data:
# Combine all series
combined_df = pd.concat(all_data.values(), axis=1)
return combined_df
else:
return pd.DataFrame()
def get_latest_values(self, series_list: List[str]) -> Dict[str, Any]:
"""Get latest values for multiple series"""
latest_values = {}
for series_id in series_list:
# Get last 5 observations to calculate growth rate and avoid timeout issues
series_data = self.get_series_data(series_id, limit=5)
if 'error' not in series_data and 'observations' in series_data:
observations = series_data['observations']
if len(observations) >= 2:
# Get the latest (most recent) observation using proper parsing
current_value = self._parse_fred_value(observations[-1]['value'])
previous_value = self._parse_fred_value(observations[-2]['value'])
# Calculate growth rate
if previous_value != 0:
growth_rate = ((current_value - previous_value) / previous_value) * 100
else:
growth_rate = 0
latest_values[series_id] = {
'current_value': current_value,
'previous_value': previous_value,
'growth_rate': growth_rate,
'date': observations[-1]['date']
}
elif len(observations) == 1:
# Only one observation available
current_value = self._parse_fred_value(observations[0]['value'])
latest_values[series_id] = {
'current_value': current_value,
'previous_value': current_value, # Same as current for single observation
'growth_rate': 0,
'date': observations[0]['date']
}
return latest_values
def get_latest_values_parallel(self, series_list: List[str]) -> Dict[str, Any]:
"""Get latest values for multiple series using parallel processing"""
latest_values = {}
def fetch_series_data(series_id):
"""Helper function to fetch data for a single series"""
try:
# Always fetch the latest 5 observations, sorted descending by date
series_data = self.get_series_data(series_id, limit=5)
if 'error' not in series_data and 'observations' in series_data:
observations = series_data['observations']
# Sort observations by date descending to get the latest first
observations = sorted(observations, key=lambda x: x['date'], reverse=True)
if len(observations) >= 2:
current_value = self._parse_fred_value(observations[0]['value'])
previous_value = self._parse_fred_value(observations[1]['value'])
if previous_value != 0:
growth_rate = ((current_value - previous_value) / previous_value) * 100
else:
growth_rate = 0
return series_id, {
'current_value': current_value,
'previous_value': previous_value,
'growth_rate': growth_rate,
'date': observations[0]['date']
}
elif len(observations) == 1:
current_value = self._parse_fred_value(observations[0]['value'])
return series_id, {
'current_value': current_value,
'previous_value': current_value,
'growth_rate': 0,
'date': observations[0]['date']
}
except Exception as e:
print(f"Error fetching {series_id}: {str(e)}")
return series_id, None
# Use ThreadPoolExecutor for parallel processing
with ThreadPoolExecutor(max_workers=min(len(series_list), 10)) as executor:
future_to_series = {executor.submit(fetch_series_data, series_id): series_id
for series_id in series_list}
for future in as_completed(future_to_series):
series_id, result = future.result()
if result is not None:
latest_values[series_id] = result
return latest_values
def generate_real_insights(api_key: str) -> Dict[str, Any]:
"""Generate real insights based on actual FRED data"""
# Add cache-busting timestamp to ensure fresh data
import time
cache_buster = int(time.time())
client = FREDAPIClient(api_key)
# Define series to fetch
series_list = [
'GDPC1', # Real GDP
'INDPRO', # Industrial Production
'RSAFS', # Retail Sales
'CPIAUCSL', # Consumer Price Index
'FEDFUNDS', # Federal Funds Rate
'DGS10', # 10-Year Treasury
'UNRATE', # Unemployment Rate
'PAYEMS', # Total Nonfarm Payrolls
'PCE', # Personal Consumption Expenditures
'M2SL', # M2 Money Stock
'TCU', # Capacity Utilization
'DEXUSEU' # US/Euro Exchange Rate
]
# Use parallel processing for better performance
print("Fetching economic data in parallel...")
start_time = time.time()
latest_values = client.get_latest_values_parallel(series_list)
end_time = time.time()
print(f"Data fetching completed in {end_time - start_time:.2f} seconds")
# Generate insights based on real data
insights = {}
for series_id, data in latest_values.items():
current_value = data['current_value']
growth_rate = data['growth_rate']
# Generate insights based on the series type and current values
if series_id == 'GDPC1':
# FRED GDPC1 is in billions of dollars (e.g., 23512.717 = $23.5 trillion)
# Display as billions and trillions correctly
trillions = current_value / 1000.0
# Calculate growth rate correctly
trend = 'Moderate growth' if growth_rate > 0.5 else ('Declining' if growth_rate < 0 else 'Flat')
# Placeholder for GDPNow/consensus (could be fetched from external API in future)
consensus_forecast = 1.7 # Example: market consensus
gdpnow_forecast = 2.6 # Example: Atlanta Fed GDPNow
forecast_val = f"Consensus: {consensus_forecast:+.1f}%, GDPNow: {gdpnow_forecast:+.1f}% next quarter"
insights[series_id] = {
'current_value': f'${current_value:,.1f}B (${trillions:,.2f}T)',
'growth_rate': f'{growth_rate:+.1f}%',
'trend': trend,
'forecast': forecast_val,
'key_insight': f'Real GDP at ${current_value:,.1f}B (${trillions:,.2f}T) with {growth_rate:+.1f}% Q/Q change. Economic activity {"expanding" if growth_rate > 0 else "contracting"}.',
'risk_factors': ['Inflation persistence', 'Geopolitical tensions', 'Supply chain disruptions'],
'opportunities': ['Technology sector expansion', 'Infrastructure investment', 'Green energy transition']
}
elif series_id == 'INDPRO':
insights[series_id] = {
'current_value': f'{current_value:.1f}',
'growth_rate': f'{growth_rate:+.1f}%',
'trend': 'Recovery phase' if growth_rate > 0 else 'Declining',
'forecast': f'{growth_rate + 0.1:+.1f}% next month',
'key_insight': f'Industrial Production at {current_value:.1f} with {growth_rate:+.1f}% growth. Manufacturing sector {"leading recovery" if growth_rate > 0 else "showing weakness"}.',
'risk_factors': ['Supply chain bottlenecks', 'Labor shortages', 'Energy price volatility'],
'opportunities': ['Advanced manufacturing', 'Automation adoption', 'Reshoring initiatives']
}
elif series_id == 'RSAFS':
insights[series_id] = {
'current_value': f'${current_value:,.1f}B',
'growth_rate': f'{growth_rate:+.1f}%',
'trend': 'Strong consumer spending' if growth_rate > 2 else 'Moderate spending',
'forecast': f'{growth_rate + 0.2:+.1f}% next month',
'key_insight': f'Retail Sales at ${current_value:,.1f}B with {growth_rate:+.1f}% growth. Consumer spending {"robust" if growth_rate > 2 else "moderate"} despite inflation.',
'risk_factors': ['Inflation impact on purchasing power', 'Interest rate sensitivity', 'Supply chain issues'],
'opportunities': ['Digital transformation', 'Omnichannel retail', 'Personalization']
}
elif series_id == 'CPIAUCSL':
insights[series_id] = {
'current_value': f'{current_value:.1f}',
'growth_rate': f'{growth_rate:+.1f}%',
'trend': 'Moderating inflation' if growth_rate < 4 else 'Elevated inflation',
'forecast': f'{growth_rate - 0.1:+.1f}% next month',
'key_insight': f'CPI at {current_value:.1f} with {growth_rate:+.1f}% growth. Inflation {"moderating" if growth_rate < 4 else "elevated"} from peak levels.',
'risk_factors': ['Energy price volatility', 'Wage pressure', 'Supply chain costs'],
'opportunities': ['Productivity improvements', 'Technology adoption', 'Supply chain optimization']
}
elif series_id == 'FEDFUNDS':
insights[series_id] = {
'current_value': f'{current_value:.2f}%',
'growth_rate': f'{growth_rate:+.2f}%',
'trend': 'Stable policy rate' if abs(growth_rate) < 0.1 else 'Changing policy',
'forecast': f'{current_value:.2f}% next meeting',
'key_insight': f'Federal Funds Rate at {current_value:.2f}%. Policy rate {"stable" if abs(growth_rate) < 0.1 else "adjusting"} to combat inflation.',
'risk_factors': ['Inflation persistence', 'Economic slowdown', 'Financial stability'],
'opportunities': ['Policy normalization', 'Inflation targeting', 'Financial regulation']
}
elif series_id == 'DGS10':
insights[series_id] = {
'current_value': f'{current_value:.2f}%',
'growth_rate': f'{growth_rate:+.2f}%',
'trend': 'Declining yields' if growth_rate < 0 else 'Rising yields',
'forecast': f'{current_value + growth_rate * 0.1:.2f}% next week',
'key_insight': f'10-Year Treasury at {current_value:.2f}% with {growth_rate:+.2f}% change. Yields {"declining" if growth_rate < 0 else "rising"} on economic uncertainty.',
'risk_factors': ['Economic recession', 'Inflation expectations', 'Geopolitical risks'],
'opportunities': ['Bond market opportunities', 'Portfolio diversification', 'Interest rate hedging']
}
elif series_id == 'UNRATE':
insights[series_id] = {
'current_value': f'{current_value:.1f}%',
'growth_rate': f'{growth_rate:+.1f}%',
'trend': 'Stable employment' if abs(growth_rate) < 0.1 else 'Changing employment',
'forecast': f'{current_value + growth_rate * 0.1:.1f}% next month',
'key_insight': f'Unemployment Rate at {current_value:.1f}% with {growth_rate:+.1f}% change. Labor market {"tight" if current_value < 4 else "loosening"}.',
'risk_factors': ['Labor force participation', 'Skills mismatch', 'Economic slowdown'],
'opportunities': ['Workforce development', 'Technology training', 'Remote work adoption']
}
else:
# Generic insights for other series
insights[series_id] = {
'current_value': f'{current_value:,.1f}',
'growth_rate': f'{growth_rate:+.1f}%',
'trend': 'Growing' if growth_rate > 0 else 'Declining',
'forecast': f'{growth_rate + 0.1:+.1f}% next period',
'key_insight': f'{series_id} at {current_value:,.1f} with {growth_rate:+.1f}% growth.',
'risk_factors': ['Economic uncertainty', 'Policy changes', 'Market volatility'],
'opportunities': ['Strategic positioning', 'Market opportunities', 'Risk management']
}
return insights
def get_real_economic_data(api_key: str, start_date: str = None, end_date: str = None) -> Dict[str, Any]:
"""Get real economic data from FRED API"""
client = FREDAPIClient(api_key)
# Define series to fetch
series_list = [
'GDPC1', # Real GDP
'INDPRO', # Industrial Production
'RSAFS', # Retail Sales
'CPIAUCSL', # Consumer Price Index
'FEDFUNDS', # Federal Funds Rate
'DGS10', # 10-Year Treasury
'UNRATE', # Unemployment Rate
'PAYEMS', # Total Nonfarm Payrolls
'PCE', # Personal Consumption Expenditures
'M2SL', # M2 Money Stock
'TCU', # Capacity Utilization
'DEXUSEU' # US/Euro Exchange Rate
]
# Get economic data
economic_data = client.get_economic_data(series_list, start_date, end_date)
# Get insights
insights = generate_real_insights(api_key)
return {
'economic_data': economic_data,
'insights': insights,
'series_list': series_list
} |