File size: 11,713 Bytes
26a8ea5 2469150 26a8ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
#!/usr/bin/env python3
"""
Comprehensive Economic Analytics Demo
Demonstrates advanced analytics capabilities including forecasting, segmentation, and statistical modeling
"""
import logging
import os
import sys
from datetime import datetime
from pathlib import Path
# Add src to path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))
from src.analysis.comprehensive_analytics import ComprehensiveAnalytics
from src.core.enhanced_fred_client import EnhancedFREDClient
from config.settings import FRED_API_KEY
def setup_logging():
"""Setup logging for demo"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
def run_basic_demo():
"""Run basic demo with key economic indicators"""
print("=" * 80)
print("ECONOMIC ANALYTICS DEMO - BASIC ANALYSIS")
print("=" * 80)
# Initialize client
client = EnhancedFREDClient(FRED_API_KEY)
# Fetch data for key indicators
indicators = ['GDPC1', 'INDPRO', 'RSAFS']
print(f"\n๐ Fetching data for indicators: {indicators}")
try:
data = client.fetch_economic_data(
indicators=indicators,
start_date='2010-01-01',
end_date='2024-01-01'
)
print(f"โ
Successfully fetched {len(data)} observations")
print(f"๐
Date range: {data.index.min().strftime('%Y-%m')} to {data.index.max().strftime('%Y-%m')}")
# Data quality report
quality_report = client.validate_data_quality(data)
print(f"\n๐ Data Quality Summary:")
for series, metrics in quality_report['missing_data'].items():
print(f" โข {series}: {metrics['completeness']:.1f}% complete")
return data
except Exception as e:
print(f"โ Error fetching data: {e}")
return None
def run_forecasting_demo(data):
"""Run forecasting demo"""
print("\n" + "=" * 80)
print("FORECASTING DEMO")
print("=" * 80)
from src.analysis.economic_forecasting import EconomicForecaster
forecaster = EconomicForecaster(data)
# Forecast key indicators
indicators = ['GDPC1', 'INDPRO', 'RSAFS']
available_indicators = [ind for ind in indicators if ind in data.columns]
print(f"๐ฎ Forecasting indicators: {available_indicators}")
for indicator in available_indicators:
try:
# Prepare data
series = forecaster.prepare_data(indicator)
# Check stationarity
stationarity = forecaster.check_stationarity(series)
print(f"\n๐ {indicator} Stationarity Test:")
print(f" โข ADF Statistic: {stationarity['adf_statistic']:.4f}")
print(f" โข P-value: {stationarity['p_value']:.4f}")
print(f" โข Is Stationary: {stationarity['is_stationary']}")
# Generate forecast
forecast_result = forecaster.forecast_series(series, forecast_periods=4)
print(f"๐ฎ {indicator} Forecast:")
print(f" โข Model: {forecast_result['model_type'].upper()}")
if forecast_result['aic']:
print(f" โข AIC: {forecast_result['aic']:.4f}")
# Backtest
backtest_result = forecaster.backtest_forecast(series)
if 'error' not in backtest_result:
print(f" โข Backtest MAPE: {backtest_result['mape']:.2f}%")
print(f" โข Backtest RMSE: {backtest_result['rmse']:.4f}")
except Exception as e:
print(f"โ Error forecasting {indicator}: {e}")
def run_segmentation_demo(data):
"""Run segmentation demo"""
print("\n" + "=" * 80)
print("SEGMENTATION DEMO")
print("=" * 80)
from src.analysis.economic_segmentation import EconomicSegmentation
segmentation = EconomicSegmentation(data)
# Time period clustering
print("๐ฏ Clustering time periods...")
try:
time_clusters = segmentation.cluster_time_periods(
indicators=['GDPC1', 'INDPRO', 'RSAFS'],
method='kmeans'
)
if 'error' not in time_clusters:
n_clusters = time_clusters['n_clusters']
print(f"โ
Time periods clustered into {n_clusters} economic regimes")
# Show cluster analysis
cluster_analysis = time_clusters['cluster_analysis']
for cluster_id, analysis in cluster_analysis.items():
print(f" โข Cluster {cluster_id}: {analysis['size']} periods ({analysis['percentage']:.1f}%)")
except Exception as e:
print(f"โ Error in time period clustering: {e}")
# Series clustering
print("\n๐ฏ Clustering economic series...")
try:
series_clusters = segmentation.cluster_economic_series(
indicators=['GDPC1', 'INDPRO', 'RSAFS', 'CPIAUCSL', 'FEDFUNDS', 'DGS10'],
method='kmeans'
)
if 'error' not in series_clusters:
n_clusters = series_clusters['n_clusters']
print(f"โ
Economic series clustered into {n_clusters} groups")
# Show cluster analysis
cluster_analysis = series_clusters['cluster_analysis']
for cluster_id, analysis in cluster_analysis.items():
print(f" โข Cluster {cluster_id}: {analysis['size']} series ({analysis['percentage']:.1f}%)")
except Exception as e:
print(f"โ Error in series clustering: {e}")
def run_statistical_demo(data):
"""Run statistical modeling demo"""
print("\n" + "=" * 80)
print("STATISTICAL MODELING DEMO")
print("=" * 80)
from src.analysis.statistical_modeling import StatisticalModeling
modeling = StatisticalModeling(data)
# Correlation analysis
print("๐ Performing correlation analysis...")
try:
corr_results = modeling.analyze_correlations()
significant_correlations = corr_results['significant_correlations']
print(f"โ
Found {len(significant_correlations)} significant correlations")
# Show top correlations
print("\n๐ Top 3 Strongest Correlations:")
for i, corr in enumerate(significant_correlations[:3]):
print(f" โข {corr['variable1']} โ {corr['variable2']}: {corr['correlation']:.3f} ({corr['strength']})")
except Exception as e:
print(f"โ Error in correlation analysis: {e}")
# Regression analysis
print("\n๐ Performing regression analysis...")
key_indicators = ['GDPC1', 'INDPRO', 'RSAFS']
for target in key_indicators:
if target in data.columns:
try:
regression_result = modeling.fit_regression_model(
target=target,
lag_periods=4
)
performance = regression_result['performance']
print(f"โ
{target} Regression Model:")
print(f" โข Rยฒ: {performance['r2']:.4f}")
print(f" โข RMSE: {performance['rmse']:.4f}")
print(f" โข MAE: {performance['mae']:.4f}")
# Show top coefficients
coefficients = regression_result['coefficients']
print(f" โข Top 3 Variables:")
for i, row in coefficients.head(3).iterrows():
print(f" - {row['variable']}: {row['coefficient']:.4f}")
except Exception as e:
print(f"โ Error in regression for {target}: {e}")
def run_comprehensive_demo():
"""Run comprehensive analytics demo"""
print("=" * 80)
print("COMPREHENSIVE ECONOMIC ANALYTICS DEMO")
print("=" * 80)
# Initialize comprehensive analytics
analytics = ComprehensiveAnalytics(FRED_API_KEY, output_dir="data/exports/demo")
# Run complete analysis
print("\n๐ Running comprehensive analysis...")
try:
results = analytics.run_complete_analysis(
indicators=['GDPC1', 'INDPRO', 'RSAFS', 'CPIAUCSL', 'FEDFUNDS', 'DGS10'],
start_date='2010-01-01',
end_date='2024-01-01',
forecast_periods=4,
include_visualizations=True
)
print("โ
Comprehensive analysis completed successfully!")
# Print key insights
if 'insights' in results:
insights = results['insights']
print("\n๐ฏ KEY INSIGHTS:")
for finding in insights.get('key_findings', []):
print(f" โข {finding}")
# Print forecasting results
if 'forecasting' in results:
print("\n๐ฎ FORECASTING RESULTS:")
forecasting_results = results['forecasting']
for indicator, result in forecasting_results.items():
if 'error' not in result:
backtest = result.get('backtest', {})
if 'error' not in backtest:
mape = backtest.get('mape', 0)
print(f" โข {indicator}: MAPE = {mape:.2f}%")
# Print segmentation results
if 'segmentation' in results:
print("\n๐ฏ SEGMENTATION RESULTS:")
segmentation_results = results['segmentation']
if 'time_period_clusters' in segmentation_results:
time_clusters = segmentation_results['time_period_clusters']
if 'error' not in time_clusters:
n_clusters = time_clusters.get('n_clusters', 0)
print(f" โข Time periods clustered into {n_clusters} economic regimes")
if 'series_clusters' in segmentation_results:
series_clusters = segmentation_results['series_clusters']
if 'error' not in series_clusters:
n_clusters = series_clusters.get('n_clusters', 0)
print(f" โข Economic series clustered into {n_clusters} groups")
print(f"\n๐ Results saved to: data/exports/demo")
except Exception as e:
print(f"โ Error in comprehensive analysis: {e}")
def main():
"""Main demo function"""
setup_logging()
print("๐ฏ ECONOMIC ANALYTICS DEMO")
print("This demo showcases advanced analytics capabilities including:")
print(" โข Economic data collection and quality assessment")
print(" โข Time series forecasting with ARIMA/ETS models")
print(" โข Economic segmentation (time periods and series)")
print(" โข Statistical modeling and correlation analysis")
print(" โข Comprehensive insights extraction")
# Check if API key is available
if not FRED_API_KEY:
print("\nโ FRED API key not found. Please set FRED_API_KEY environment variable.")
return
# Run basic demo
data = run_basic_demo()
if data is None:
return
# Run individual demos
run_forecasting_demo(data)
run_segmentation_demo(data)
run_statistical_demo(data)
# Run comprehensive demo
run_comprehensive_demo()
print("\n" + "=" * 80)
print("DEMO COMPLETED!")
print("=" * 80)
print("Generated outputs:")
print(" ๐ data/exports/demo/ - Comprehensive analysis results")
print(" ๐ Visualizations and reports")
print(" ๐ Statistical diagnostics")
print(" ๐ฎ Forecasting results")
print(" ๐ฏ Segmentation analysis")
if __name__ == "__main__":
main() |