File size: 17,400 Bytes
2b395f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
#!/usr/bin/env python3
"""
FRED ML Streamlit Demo
Interactive demonstration of the FRED ML system capabilities
"""
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import os
import sys
import json
import time
# Add src to path for imports
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'src'))
# Page configuration
st.set_page_config(
page_title="FRED ML Demo",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
def create_sample_data():
"""Create sample economic data for demo"""
np.random.seed(42)
dates = pd.date_range('2020-01-01', '2024-01-01', freq='M')
# Simulate realistic economic indicators
data = {
'GDP': np.random.normal(100, 5, len(dates)) + np.cumsum(np.random.normal(0, 0.5, len(dates))),
'UNRATE': np.random.normal(5, 1, len(dates)),
'CPIAUCSL': np.random.normal(200, 10, len(dates)) + np.cumsum(np.random.normal(0, 1, len(dates))),
'FEDFUNDS': np.random.normal(2, 0.5, len(dates)),
'DGS10': np.random.normal(3, 0.3, len(dates))
}
return pd.DataFrame(data, index=dates)
def main():
"""Main Streamlit application"""
# Header
st.title("π FRED ML System Demo")
st.markdown("---")
# Sidebar
st.sidebar.title("ποΈ Demo Controls")
# Demo sections
demo_section = st.sidebar.selectbox(
"Choose Demo Section:",
["π Overview", "π Data Processing", "π¨ Visualizations", "π Analysis", "ποΈ Architecture", "β‘ Live Demo"]
)
if demo_section == "π Overview":
show_overview()
elif demo_section == "π Data Processing":
show_data_processing()
elif demo_section == "π¨ Visualizations":
show_visualizations()
elif demo_section == "π Analysis":
show_analysis()
elif demo_section == "ποΈ Architecture":
show_architecture()
elif demo_section == "β‘ Live Demo":
show_live_demo()
def show_overview():
"""Show system overview"""
st.header("π FRED ML System Overview")
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("""
### What is FRED ML?
**FRED ML** is a comprehensive Machine Learning system for analyzing Federal Reserve Economic Data (FRED).
It provides automated data processing, advanced analytics, and interactive visualizations for economic indicators.
### Key Features:
- π **Real-time Data Processing**: Automated FRED API integration
- π€ **Machine Learning Analytics**: Advanced statistical modeling
- π **Interactive Visualizations**: Dynamic charts and dashboards
- π **Automated Workflows**: CI/CD pipeline with quality gates
- βοΈ **Cloud-Native**: AWS Lambda and S3 integration
- π§ͺ **Comprehensive Testing**: Unit, integration, and E2E tests
### System Components:
- **Frontend**: Streamlit interactive dashboard
- **Backend**: AWS Lambda serverless functions
- **Storage**: AWS S3 for data persistence
- **Scheduling**: EventBridge for automated triggers
- **Data Source**: FRED API for economic indicators
""")
with col2:
# System status
st.subheader("π§ System Status")
status_data = {
"Component": ["FRED API", "AWS Lambda", "S3 Storage", "Streamlit", "Testing"],
"Status": ["β
Connected", "β
Ready", "β
Ready", "β
Running", "β
Complete"]
}
st.dataframe(pd.DataFrame(status_data))
def show_data_processing():
"""Show data processing capabilities"""
st.header("π Data Processing Demo")
# Create sample data
df = create_sample_data()
col1, col2 = st.columns(2)
with col1:
st.subheader("π Sample Economic Data")
st.dataframe(df.head(10))
st.subheader("π Data Summary")
summary_stats = df.describe()
st.dataframe(summary_stats)
with col2:
st.subheader("π Correlation Matrix")
correlation = df.corr()
# Create heatmap
fig = px.imshow(
correlation,
text_auto=True,
aspect="auto",
color_continuous_scale="RdBu",
title="Economic Indicators Correlation"
)
st.plotly_chart(fig, use_container_width=True)
# Data quality metrics
st.subheader("π Data Quality Metrics")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Records", len(df))
with col2:
st.metric("Indicators", len(df.columns))
with col3:
st.metric("Date Range", f"{df.index.min().strftime('%Y-%m')} to {df.index.max().strftime('%Y-%m')}")
with col4:
missing_data = df.isnull().sum().sum()
st.metric("Missing Values", missing_data)
def show_visualizations():
"""Show visualization capabilities"""
st.header("π¨ Visualization Demo")
df = create_sample_data()
# Visualization options
viz_type = st.selectbox(
"Choose Visualization Type:",
["Time Series", "Correlation Heatmap", "Distribution Plots", "Interactive Dashboard"]
)
if viz_type == "Time Series":
st.subheader("π Economic Indicators Over Time")
# Multi-line time series
fig = go.Figure()
for col in df.columns:
fig.add_trace(go.Scatter(
x=df.index,
y=df[col],
name=col,
mode='lines',
line=dict(width=2)
))
fig.update_layout(
title="Economic Indicators Time Series",
xaxis_title="Date",
yaxis_title="Value",
height=500,
hovermode='x unified'
)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Correlation Heatmap":
st.subheader("π₯ Correlation Matrix Heatmap")
correlation = df.corr()
fig = px.imshow(
correlation,
text_auto=True,
aspect="auto",
color_continuous_scale="RdBu",
title="Economic Indicators Correlation Heatmap"
)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Distribution Plots":
st.subheader("π Distribution Analysis")
# Create subplots for distributions
fig = make_subplots(
rows=2, cols=3,
subplot_titles=df.columns,
specs=[[{"secondary_y": False}, {"secondary_y": False}, {"secondary_y": False}],
[{"secondary_y": False}, {"secondary_y": False}, {"secondary_y": False}]]
)
for i, col in enumerate(df.columns):
row = (i // 3) + 1
col_num = (i % 3) + 1
fig.add_trace(
go.Histogram(x=df[col], name=col, nbinsx=20),
row=row, col=col_num
)
fig.update_layout(height=600, title_text="Distribution of Economic Indicators")
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Interactive Dashboard":
st.subheader("ποΈ Interactive Dashboard")
# Interactive controls
selected_indicators = st.multiselect(
"Select Indicators:",
df.columns,
default=df.columns[:3]
)
date_range = st.slider(
"Select Date Range:",
min_value=df.index.min(),
max_value=df.index.max(),
value=(df.index.min(), df.index.max())
)
if selected_indicators:
filtered_df = df.loc[date_range[0]:date_range[1], selected_indicators]
fig = go.Figure()
for col in selected_indicators:
fig.add_trace(go.Scatter(
x=filtered_df.index,
y=filtered_df[col],
name=col,
mode='lines+markers'
))
fig.update_layout(
title="Interactive Economic Indicators",
xaxis_title="Date",
yaxis_title="Value",
height=500
)
st.plotly_chart(fig, use_container_width=True)
def show_analysis():
"""Show analysis capabilities"""
st.header("π Analysis Demo")
df = create_sample_data()
# Analysis tabs
tab1, tab2, tab3, tab4 = st.tabs(["π Trend Analysis", "π Volatility", "π Correlations", "π Summary"])
with tab1:
st.subheader("π Trend Analysis")
# Calculate trends
trends = {}
for col in df.columns:
x = np.arange(len(df))
y = df[col].values
slope, intercept = np.polyfit(x, y, 1)
trends[col] = {
'slope': slope,
'trend_direction': 'Increasing' if slope > 0 else 'Decreasing',
'trend_strength': abs(slope)
}
# Display trends
trend_data = []
for indicator, trend in trends.items():
trend_data.append({
'Indicator': indicator,
'Trend': trend['trend_direction'],
'Slope': f"{trend['slope']:.4f}",
'Strength': f"{trend['trend_strength']:.4f}"
})
st.dataframe(pd.DataFrame(trend_data))
# Trend visualization
fig = go.Figure()
for col in df.columns:
fig.add_trace(go.Scatter(
x=df.index,
y=df[col],
name=f"{col} (Trend: {trends[col]['trend_direction']})",
mode='lines'
))
fig.update_layout(
title="Economic Indicators with Trend Analysis",
xaxis_title="Date",
yaxis_title="Value",
height=500
)
st.plotly_chart(fig, use_container_width=True)
with tab2:
st.subheader("π Volatility Analysis")
# Calculate volatility
volatility = df.pct_change().std() * np.sqrt(252) # Annualized
# Volatility chart
fig = px.bar(
x=volatility.index,
y=volatility.values,
title="Annualized Volatility by Indicator",
labels={'x': 'Indicator', 'y': 'Volatility'}
)
st.plotly_chart(fig, use_container_width=True)
# Volatility table
vol_data = []
for indicator, vol in volatility.items():
vol_data.append({
'Indicator': indicator,
'Annualized Volatility': f"{vol:.2%}"
})
st.dataframe(pd.DataFrame(vol_data))
with tab3:
st.subheader("π Correlation Analysis")
correlation = df.corr()
# Correlation heatmap
fig = px.imshow(
correlation,
text_auto=True,
aspect="auto",
color_continuous_scale="RdBu",
title="Correlation Matrix"
)
st.plotly_chart(fig, use_container_width=True)
# Strong correlations
st.subheader("Strong Correlations (>0.7)")
strong_corr = []
for i, col1 in enumerate(df.columns):
for j, col2 in enumerate(df.columns):
if i < j:
corr = correlation.loc[col1, col2]
if abs(corr) > 0.7:
strong_corr.append({
'Indicator 1': col1,
'Indicator 2': col2,
'Correlation': f"{corr:.3f}"
})
if strong_corr:
st.dataframe(pd.DataFrame(strong_corr))
else:
st.info("No strong correlations found in this sample data.")
with tab4:
st.subheader("π Analysis Summary")
col1, col2 = st.columns(2)
with col1:
st.metric("Total Indicators", len(df.columns))
st.metric("Data Points", len(df))
st.metric("Date Range", f"{df.index.min().strftime('%Y-%m')} to {df.index.max().strftime('%Y-%m')}")
with col2:
avg_volatility = volatility.mean()
st.metric("Average Volatility", f"{avg_volatility:.2%}")
increasing_trends = sum(1 for trend in trends.values() if trend['trend_direction'] == 'Increasing')
st.metric("Increasing Trends", f"{increasing_trends}/{len(trends)}")
def show_architecture():
"""Show system architecture"""
st.header("ποΈ System Architecture")
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("π Component Overview")
architecture_data = {
"Component": ["Frontend", "Backend", "Storage", "Scheduling", "Data Source"],
"Technology": ["Streamlit", "AWS Lambda", "AWS S3", "EventBridge", "FRED API"],
"Status": ["β
Ready", "β
Ready", "β
Ready", "β
Ready", "β
Connected"]
}
st.dataframe(pd.DataFrame(architecture_data))
st.subheader("π§ Key Features")
features = [
"π¨ Interactive Streamlit Dashboard",
"β‘ Serverless AWS Lambda Functions",
"π¦ Scalable S3 Storage",
"β° Automated EventBridge Scheduling",
"π Real-time FRED API Integration",
"π§ͺ Comprehensive Testing Suite",
"π CI/CD Pipeline with GitHub Actions",
"π Advanced Analytics & ML"
]
for feature in features:
st.write(f"β’ {feature}")
with col2:
st.subheader("π Data Flow")
# Create a simple flow diagram
st.markdown("""
```
FRED API β AWS Lambda β S3 Storage β Streamlit Dashboard
β
EventBridge (Scheduling)
β
CloudWatch (Monitoring)
```
""")
st.subheader("π System Metrics")
metrics_data = {
"Metric": ["API Response Time", "Data Processing Speed", "Storage Capacity", "Uptime"],
"Value": ["< 100ms", "Real-time", "Unlimited", "99.9%"],
"Status": ["β
Optimal", "β
Fast", "β
Scalable", "β
High"]
}
st.dataframe(pd.DataFrame(metrics_data))
def show_live_demo():
"""Show live demo capabilities"""
st.header("β‘ Live Demo")
st.info("This section demonstrates real-time capabilities of the FRED ML system.")
# Demo controls
col1, col2 = st.columns(2)
with col1:
st.subheader("ποΈ Demo Controls")
# Simulate real-time data
if st.button("π Refresh Data"):
st.success("Data refreshed successfully!")
time.sleep(1)
# Analysis type
analysis_type = st.selectbox(
"Analysis Type:",
["Quick Analysis", "Deep Dive", "Custom Range"]
)
# Date range
start_date = st.date_input("Start Date", value=datetime(2020, 1, 1))
end_date = st.date_input("End Date", value=datetime(2024, 1, 1))
with col2:
st.subheader("π Live Metrics")
# Simulate live metrics
import random
col1, col2 = st.columns(2)
with col1:
st.metric("API Calls/sec", random.randint(10, 50))
st.metric("Data Points", random.randint(1000, 5000))
with col2:
st.metric("Processing Time", f"{random.uniform(0.1, 0.5):.2f}s")
st.metric("Success Rate", f"{random.uniform(95, 99.9):.1f}%")
# Live visualization
st.subheader("π Live Data Visualization")
# Create animated chart
df = create_sample_data()
# Add some noise for "live" effect
live_df = df.copy()
live_df += np.random.normal(0, 0.1, live_df.shape)
fig = go.Figure()
for col in live_df.columns:
fig.add_trace(go.Scatter(
x=live_df.index,
y=live_df[col],
name=col,
mode='lines',
line=dict(width=2)
))
fig.update_layout(
title="Live Economic Indicators",
xaxis_title="Date",
yaxis_title="Value",
height=500
)
st.plotly_chart(fig, use_container_width=True)
# Status indicators
st.subheader("π§ System Status")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.success("β
FRED API")
with col2:
st.success("β
AWS Lambda")
with col3:
st.success("β
S3 Storage")
with col4:
st.success("β
Streamlit")
if __name__ == "__main__":
main() |