File size: 21,528 Bytes
f35bff2
 
 
 
 
 
832348e
 
f35bff2
832348e
 
f35bff2
832348e
f35bff2
 
832348e
f35bff2
832348e
f35bff2
832348e
f35bff2
 
832348e
 
 
 
 
f35bff2
 
 
 
 
 
832348e
f35bff2
 
 
 
 
 
 
 
832348e
f35bff2
 
832348e
f35bff2
 
 
 
 
832348e
f35bff2
 
 
 
832348e
f35bff2
 
 
 
 
 
832348e
f35bff2
 
 
 
 
 
832348e
f35bff2
 
 
 
832348e
f35bff2
 
 
 
832348e
f35bff2
832348e
f35bff2
 
832348e
f35bff2
832348e
f35bff2
 
832348e
f35bff2
832348e
 
 
 
 
 
f35bff2
832348e
 
 
 
f35bff2
 
 
 
832348e
f35bff2
 
832348e
 
f35bff2
 
 
 
832348e
f35bff2
 
832348e
f35bff2
 
832348e
 
 
f35bff2
832348e
 
 
 
 
f35bff2
832348e
 
 
f35bff2
832348e
 
 
f35bff2
832348e
 
f35bff2
 
 
 
832348e
f35bff2
 
832348e
f35bff2
 
 
832348e
f35bff2
 
 
 
832348e
f35bff2
 
 
 
832348e
f35bff2
 
 
832348e
f35bff2
 
 
832348e
f35bff2
 
 
 
 
832348e
f35bff2
 
 
 
 
832348e
f35bff2
 
 
 
 
832348e
f35bff2
 
 
832348e
f35bff2
 
832348e
f35bff2
 
 
 
832348e
f35bff2
 
 
 
832348e
f35bff2
 
 
 
 
 
 
 
832348e
f35bff2
 
 
832348e
f35bff2
 
 
 
 
 
 
832348e
f35bff2
832348e
 
 
 
 
 
 
 
 
 
 
 
 
 
f35bff2
 
832348e
 
 
f35bff2
 
 
 
 
832348e
f35bff2
 
 
832348e
 
 
 
f35bff2
 
 
 
 
832348e
f35bff2
 
 
 
 
 
 
832348e
f35bff2
 
 
 
 
 
 
 
 
 
 
832348e
 
 
 
f35bff2
 
832348e
 
 
 
f35bff2
 
832348e
 
 
f35bff2
 
 
 
 
 
 
 
 
 
832348e
f35bff2
 
832348e
f35bff2
 
832348e
 
 
 
 
 
 
 
f35bff2
832348e
f35bff2
 
832348e
f35bff2
832348e
 
f35bff2
 
 
 
832348e
f35bff2
 
832348e
f35bff2
 
 
 
832348e
 
 
 
f35bff2
 
 
 
 
 
 
 
832348e
f35bff2
 
832348e
f35bff2
 
832348e
 
 
 
f35bff2
832348e
 
 
 
 
f35bff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832348e
 
 
 
 
 
 
 
 
 
 
f35bff2
 
 
832348e
 
 
f35bff2
 
832348e
 
 
 
 
f35bff2
 
 
832348e
 
 
f35bff2
 
 
 
 
832348e
f35bff2
 
832348e
f35bff2
 
 
832348e
f35bff2
 
832348e
f35bff2
 
832348e
 
 
f35bff2
 
 
 
 
832348e
 
 
f35bff2
 
 
832348e
f35bff2
 
832348e
 
f35bff2
832348e
 
 
f35bff2
 
 
 
 
 
 
832348e
 
 
 
 
f35bff2
832348e
 
 
f35bff2
832348e
 
 
f35bff2
832348e
f35bff2
 
832348e
 
 
f35bff2
 
 
 
 
 
 
 
 
 
 
832348e
f35bff2
 
832348e
 
 
 
 
 
 
 
 
f35bff2
832348e
 
 
f35bff2
 
 
 
832348e
 
f35bff2
832348e
f35bff2
 
 
832348e
f35bff2
 
832348e
f35bff2
 
832348e
f35bff2
 
832348e
f35bff2
 
832348e
f35bff2
 
832348e
f35bff2
 
832348e
f35bff2
 
 
 
 
 
832348e
 
 
f35bff2
832348e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
#!/usr/bin/env python3
"""
Advanced Analytics Module for FRED Economic Data
Performs comprehensive statistical analysis, modeling, and insights extraction.
"""

import warnings

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
from scipy import stats
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score, silhouette_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from statsmodels.stats.diagnostic import het_breuschpagan
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.seasonal import seasonal_decompose

warnings.filterwarnings("ignore")


class AdvancedAnalytics:
    """
    Comprehensive analytics class for FRED economic data.
    Performs EDA, statistical modeling, segmentation, and time series analysis.
    """

    def __init__(self, data_path=None, df=None):
        """Initialize with data path or DataFrame."""
        if df is not None:
            self.df = df
        elif data_path:
            self.df = pd.read_csv(data_path, index_col=0, parse_dates=True)
        else:
            raise ValueError("Must provide either data_path or DataFrame")

        self.scaler = StandardScaler()
        self.results = {}

    def perform_eda(self):
        """Perform comprehensive Exploratory Data Analysis."""
        print("=" * 60)
        print("EXPLORATORY DATA ANALYSIS")
        print("=" * 60)

        # Basic info
        print(f"\nDataset Shape: {self.df.shape}")
        print(f"Date Range: {self.df.index.min()} to {self.df.index.max()}")
        print(f"Variables: {list(self.df.columns)}")

        # Descriptive statistics
        print("\n" + "=" * 40)
        print("DESCRIPTIVE STATISTICS")
        print("=" * 40)
        desc_stats = self.df.describe()
        print(desc_stats)

        # Skewness and Kurtosis
        print("\n" + "=" * 40)
        print("SKEWNESS AND KURTOSIS")
        print("=" * 40)
        skewness = self.df.skew()
        kurtosis = self.df.kurtosis()

        for col in self.df.columns:
            print(f"{col}:")
            print(f"  Skewness: {skewness[col]:.3f}")
            print(f"  Kurtosis: {kurtosis[col]:.3f}")

        # Correlation Analysis
        print("\n" + "=" * 40)
        print("CORRELATION ANALYSIS")
        print("=" * 40)

        # Pearson correlation
        pearson_corr = self.df.corr(method="pearson")
        print("\nPearson Correlation Matrix:")
        print(pearson_corr.round(3))

        # Spearman correlation
        spearman_corr = self.df.corr(method="spearman")
        print("\nSpearman Correlation Matrix:")
        print(spearman_corr.round(3))

        # Store results
        self.results["eda"] = {
            "descriptive_stats": desc_stats,
            "skewness": skewness,
            "kurtosis": kurtosis,
            "pearson_corr": pearson_corr,
            "spearman_corr": spearman_corr,
        }

        return self.results["eda"]

    def perform_dimensionality_reduction(self, method="pca", n_components=2):
        """Perform dimensionality reduction for visualization."""
        print("\n" + "=" * 40)
        print(f"DIMENSIONALITY REDUCTION ({method.upper()})")
        print("=" * 40)

        # Prepare data (remove NaN values)
        df_clean = self.df.dropna()

        if method.lower() == "pca":
            # PCA
            pca = PCA(n_components=n_components)
            scaled_data = self.scaler.fit_transform(df_clean)
            pca_result = pca.fit_transform(scaled_data)

            print(f"Explained variance ratio: {pca.explained_variance_ratio_}")
            print(f"Total explained variance: {sum(pca.explained_variance_ratio_):.3f}")

            # Create DataFrame with PCA results
            pca_df = pd.DataFrame(
                pca_result,
                columns=[f"PC{i+1}" for i in range(n_components)],
                index=df_clean.index,
            )

            self.results["pca"] = {
                "components": pca_df,
                "explained_variance": pca.explained_variance_ratio_,
                "feature_importance": pd.DataFrame(
                    pca.components_.T,
                    columns=[f"PC{i+1}" for i in range(n_components)],
                    index=df_clean.columns,
                ),
            }

            return self.results["pca"]

        return None

    def perform_statistical_modeling(self, target_var="GDP", test_size=0.2):
        """Perform linear regression with comprehensive diagnostics."""
        print("\n" + "=" * 40)
        print("STATISTICAL MODELING - LINEAR REGRESSION")
        print("=" * 40)

        # Prepare data
        df_clean = self.df.dropna()

        if target_var not in df_clean.columns:
            print(f"Target variable '{target_var}' not found in dataset")
            return None

        # Prepare features and target
        feature_cols = [col for col in df_clean.columns if col != target_var]
        X = df_clean[feature_cols]
        y = df_clean[target_var]

        # Split data
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=test_size, random_state=42
        )

        # Fit linear regression
        model = LinearRegression()
        model.fit(X_train, y_train)

        # Predictions
        y_pred_train = model.predict(X_train)
        y_pred_test = model.predict(X_test)

        # Model performance
        r2_train = r2_score(y_train, y_pred_train)
        r2_test = r2_score(y_test, y_pred_test)
        rmse_train = np.sqrt(mean_squared_error(y_train, y_pred_train))
        rmse_test = np.sqrt(mean_squared_error(y_test, y_pred_test))

        print(f"\nModel Performance:")
        print(f"R² (Training): {r2_train:.4f}")
        print(f"R² (Test): {r2_test:.4f}")
        print(f"RMSE (Training): {rmse_train:.4f}")
        print(f"RMSE (Test): {rmse_test:.4f}")

        # Coefficients
        print(f"\nCoefficients:")
        for feature, coef in zip(feature_cols, model.coef_):
            print(f"  {feature}: {coef:.4f}")
        print(f"  Intercept: {model.intercept_:.4f}")

        # Statistical significance using statsmodels
        X_with_const = sm.add_constant(X_train)
        model_sm = sm.OLS(y_train, X_with_const).fit()

        print(f"\nStatistical Significance:")
        print(model_sm.summary().tables[1])

        # Assumption tests
        print(f"\n" + "=" * 30)
        print("REGRESSION ASSUMPTIONS")
        print("=" * 30)

        # 1. Normality of residuals
        residuals = y_train - y_pred_train
        _, p_value_norm = stats.normaltest(residuals)
        print(f"Normality test (p-value): {p_value_norm:.4f}")

        # 2. Multicollinearity (VIF)
        vif_data = []
        for i in range(X_train.shape[1]):
            try:
                vif = variance_inflation_factor(X_train.values, i)
                vif_data.append(vif)
            except:
                vif_data.append(np.nan)

        print(f"\nVariance Inflation Factors:")
        for feature, vif in zip(feature_cols, vif_data):
            print(f"  {feature}: {vif:.3f}")

        # 3. Homoscedasticity
        try:
            _, p_value_het = het_breuschpagan(residuals, X_with_const)
            print(f"\nHomoscedasticity test (p-value): {p_value_het:.4f}")
        except:
            p_value_het = np.nan
            print(f"\nHomoscedasticity test failed")

        # Store results
        self.results["regression"] = {
            "model": model,
            "model_sm": model_sm,
            "performance": {
                "r2_train": r2_train,
                "r2_test": r2_test,
                "rmse_train": rmse_train,
                "rmse_test": rmse_test,
            },
            "coefficients": dict(zip(feature_cols, model.coef_)),
            "assumptions": {
                "normality_p": p_value_norm,
                "homoscedasticity_p": p_value_het,
                "vif": dict(zip(feature_cols, vif_data)),
            },
        }

        return self.results["regression"]

    def perform_clustering(self, max_k=10):
        """Perform clustering analysis with optimal k selection."""
        print("\n" + "=" * 40)
        print("CLUSTERING ANALYSIS")
        print("=" * 40)

        # Prepare data
        df_clean = self.df.dropna()
        if df_clean.shape[0] < 10 or df_clean.shape[1] < 2:
            print(
                "Not enough data for clustering (need at least 10 rows and 2 columns after dropna). Skipping."
            )
            self.results["clustering"] = None
            return None
        try:
            scaled_data = self.scaler.fit_transform(df_clean)
        except Exception as e:
            print(f"Scaling failed: {e}")
            self.results["clustering"] = None
            return None
        # Find optimal k using elbow method and silhouette score
        inertias = []
        silhouette_scores = []
        k_range = range(2, min(max_k + 1, len(df_clean) // 10 + 1))
        if len(k_range) < 2:
            print("Not enough data for multiple clusters. Skipping clustering.")
            self.results["clustering"] = None
            return None
        try:
            for k in k_range:
                kmeans = KMeans(n_clusters=k, random_state=42)
                kmeans.fit(scaled_data)
                inertias.append(kmeans.inertia_)
                silhouette_scores.append(silhouette_score(scaled_data, kmeans.labels_))
            # Plot elbow curve only if there are results
            if inertias and silhouette_scores:
                plt.figure(figsize=(12, 4))
                plt.subplot(1, 2, 1)
                plt.plot(list(k_range), inertias, "bo-")
                plt.xlabel("Number of Clusters (k)")
                plt.ylabel("Inertia")
                plt.title("Elbow Method")
                plt.grid(True)
                plt.subplot(1, 2, 2)
                plt.plot(list(k_range), silhouette_scores, "ro-")
                plt.xlabel("Number of Clusters (k)")
                plt.ylabel("Silhouette Score")
                plt.title("Silhouette Analysis")
                plt.grid(True)
                plt.tight_layout()
                plt.savefig(
                    "data/exports/clustering_analysis.png", dpi=300, bbox_inches="tight"
                )
                plt.show()
            # Choose optimal k (highest silhouette score)
            optimal_k = list(k_range)[np.argmax(silhouette_scores)]
            print(f"Optimal number of clusters: {optimal_k}")
            print(f"Best silhouette score: {max(silhouette_scores):.3f}")
            # Perform clustering with optimal k
            kmeans_optimal = KMeans(n_clusters=optimal_k, random_state=42)
            cluster_labels = kmeans_optimal.fit_predict(scaled_data)
            # Add cluster labels to data
            df_clustered = df_clean.copy()
            df_clustered["Cluster"] = cluster_labels
            # Cluster characteristics
            print(f"\nCluster Characteristics:")
            cluster_stats = df_clustered.groupby("Cluster").agg(["mean", "std"])
            print(cluster_stats.round(3))
            # Store results
            self.results["clustering"] = {
                "optimal_k": optimal_k,
                "silhouette_score": max(silhouette_scores),
                "cluster_labels": cluster_labels,
                "clustered_data": df_clustered,
                "cluster_stats": cluster_stats,
                "inertias": inertias,
                "silhouette_scores": silhouette_scores,
            }
            return self.results["clustering"]
        except Exception as e:
            print(f"Clustering failed: {e}")
            self.results["clustering"] = None
            return None

    def perform_time_series_analysis(self, target_var="GDP"):
        """Perform comprehensive time series analysis."""
        print("\n" + "=" * 40)
        print("TIME SERIES ANALYSIS")
        print("=" * 40)

        if target_var not in self.df.columns:
            print(f"Target variable '{target_var}' not found")
            self.results["time_series"] = None
            return None
        # Prepare time series data
        ts_data = self.df[target_var].dropna()
        if len(ts_data) < 50:
            print(
                "Insufficient data for time series analysis (need at least 50 points). Skipping."
            )
            self.results["time_series"] = None
            return None
        print(f"Time series length: {len(ts_data)} observations")
        print(f"Date range: {ts_data.index.min()} to {ts_data.index.max()}")
        # 1. Time Series Decomposition
        print(f"\nTime Series Decomposition:")
        try:
            # Resample to monthly data if needed
            if ts_data.index.freq is None:
                ts_monthly = ts_data.resample("M").mean()
            else:
                ts_monthly = ts_data
            decomposition = seasonal_decompose(ts_monthly, model="additive", period=12)
            # Plot decomposition
            fig, axes = plt.subplots(4, 1, figsize=(12, 10))
            decomposition.observed.plot(ax=axes[0], title="Original Time Series")
            decomposition.trend.plot(ax=axes[1], title="Trend")
            decomposition.seasonal.plot(ax=axes[2], title="Seasonality")
            decomposition.resid.plot(ax=axes[3], title="Residuals")
            plt.tight_layout()
            plt.savefig(
                "data/exports/time_series_decomposition.png",
                dpi=300,
                bbox_inches="tight",
            )
            plt.show()
        except Exception as e:
            print(f"Decomposition failed: {e}")
        # 2. ARIMA Modeling
        print(f"\nARIMA Modeling:")
        try:
            # Fit ARIMA model
            model = ARIMA(ts_monthly, order=(1, 1, 1))
            fitted_model = model.fit()
            print(f"ARIMA Model Summary:")
            print(fitted_model.summary())
            # Forecast
            forecast_steps = min(12, len(ts_monthly) // 4)
            forecast = fitted_model.forecast(steps=forecast_steps)
            conf_int = fitted_model.get_forecast(steps=forecast_steps).conf_int()
            # Plot forecast
            plt.figure(figsize=(12, 6))
            ts_monthly.plot(label="Historical Data")
            forecast.plot(label="Forecast", color="red")
            plt.fill_between(
                forecast.index,
                conf_int.iloc[:, 0],
                conf_int.iloc[:, 1],
                alpha=0.3,
                color="red",
                label="Confidence Interval",
            )
            plt.title(f"{target_var} - ARIMA Forecast")
            plt.legend()
            plt.grid(True)
            plt.tight_layout()
            plt.savefig(
                "data/exports/time_series_forecast.png", dpi=300, bbox_inches="tight"
            )
            plt.show()
            # Store results
            self.results["time_series"] = {
                "model": fitted_model,
                "forecast": forecast,
                "confidence_intervals": conf_int,
                "decomposition": decomposition if "decomposition" in locals() else None,
            }
        except Exception as e:
            print(f"ARIMA modeling failed: {e}")
            self.results["time_series"] = None
        return self.results.get("time_series")

    def generate_insights_report(self):
        """Generate comprehensive insights report in layman's terms."""
        print("\n" + "=" * 60)
        print("COMPREHENSIVE INSIGHTS REPORT")
        print("=" * 60)

        insights = []
        # EDA Insights
        if "eda" in self.results and self.results["eda"] is not None:
            insights.append("EXPLORATORY DATA ANALYSIS INSIGHTS:")
            insights.append("-" * 40)
            # Correlation insights
            pearson_corr = self.results["eda"]["pearson_corr"]
            high_corr_pairs = []
            for i in range(len(pearson_corr.columns)):
                for j in range(i + 1, len(pearson_corr.columns)):
                    corr_val = pearson_corr.iloc[i, j]
                    if abs(corr_val) > 0.7:
                        high_corr_pairs.append(
                            (pearson_corr.columns[i], pearson_corr.columns[j], corr_val)
                        )
            if high_corr_pairs:
                insights.append("Strong correlations found:")
                for var1, var2, corr in high_corr_pairs:
                    insights.append(f"  • {var1} and {var2}: {corr:.3f}")
            else:
                insights.append(
                    "No strong correlations (>0.7) found between variables."
                )
        else:
            insights.append("EDA could not be performed or returned no results.")
        # Regression Insights
        if "regression" in self.results and self.results["regression"] is not None:
            insights.append("\nREGRESSION MODEL INSIGHTS:")
            insights.append("-" * 40)
            reg_results = self.results["regression"]
            r2_test = reg_results["performance"]["r2_test"]
            insights.append(f"Model Performance:")
            insights.append(
                f"  • The model explains {r2_test:.1%} of the variation in the target variable"
            )
            if r2_test > 0.7:
                insights.append("  • This is considered a good model fit")
            elif r2_test > 0.5:
                insights.append("  • This is considered a moderate model fit")
            else:
                insights.append("  • This model has limited predictive power")
            # Assumption insights
            assumptions = reg_results["assumptions"]
            if assumptions["normality_p"] > 0.05:
                insights.append(
                    "  • Residuals are normally distributed (assumption met)"
                )
            else:
                insights.append(
                    "  • Residuals are not normally distributed (assumption violated)"
                )
        else:
            insights.append(
                "Regression modeling could not be performed or returned no results."
            )
        # Clustering Insights
        if "clustering" in self.results and self.results["clustering"] is not None:
            insights.append("\nCLUSTERING INSIGHTS:")
            insights.append("-" * 40)
            cluster_results = self.results["clustering"]
            optimal_k = cluster_results["optimal_k"]
            silhouette_score = cluster_results["silhouette_score"]
            insights.append(f"Optimal number of clusters: {optimal_k}")
            insights.append(f"Cluster quality score: {silhouette_score:.3f}")
            if silhouette_score > 0.5:
                insights.append("  • Clusters are well-separated and distinct")
            elif silhouette_score > 0.3:
                insights.append("  • Clusters show moderate separation")
            else:
                insights.append("  • Clusters may not be well-defined")
        else:
            insights.append("Clustering could not be performed or returned no results.")
        # Time Series Insights
        if "time_series" in self.results and self.results["time_series"] is not None:
            insights.append("\nTIME SERIES INSIGHTS:")
            insights.append("-" * 40)
            insights.append(
                "  • Time series decomposition shows trend, seasonality, and random components"
            )
            insights.append(
                "  • ARIMA model provides future forecasts with confidence intervals"
            )
            insights.append(
                "  • Forecasts can be used for planning and decision-making"
            )
        else:
            insights.append(
                "Time series analysis could not be performed or returned no results."
            )
        # Print insights
        for insight in insights:
            print(insight)
        # Save insights to file
        with open("data/exports/insights_report.txt", "w") as f:
            f.write("\n".join(insights))
        return insights

    def run_complete_analysis(self):
        """Run the complete advanced analytics workflow."""
        print("Starting comprehensive advanced analytics...")

        # 1. EDA
        self.perform_eda()

        # 2. Dimensionality reduction
        self.perform_dimensionality_reduction()

        # 3. Statistical modeling
        self.perform_statistical_modeling()

        # 4. Clustering
        self.perform_clustering()

        # 5. Time series analysis
        self.perform_time_series_analysis()

        # 6. Generate insights
        self.generate_insights_report()

        print("\n" + "=" * 60)
        print("ANALYSIS COMPLETE!")
        print("=" * 60)
        print("Check the following outputs:")
        print("  • data/exports/insights_report.txt - Comprehensive insights")
        print("  • data/exports/clustering_analysis.png - Clustering results")
        print(
            "  • data/exports/time_series_decomposition.png - Time series decomposition"
        )
        print("  • data/exports/time_series_forecast.png - Time series forecast")

        return self.results