File size: 22,237 Bytes
099d8d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
#!/usr/bin/env python3
"""
Alignment and Divergence Analyzer
Analyzes long-term alignment/divergence between economic indicators using Spearman correlation
and detects sudden deviations using Z-score analysis.
"""
import logging
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from typing import Dict, List, Optional, Tuple, Union
from datetime import datetime, timedelta
logger = logging.getLogger(__name__)
class AlignmentDivergenceAnalyzer:
"""
Analyzes long-term alignment/divergence patterns and sudden deviations in economic indicators
"""
def __init__(self, data: pd.DataFrame):
"""
Initialize analyzer with economic data
Args:
data: DataFrame with economic indicators (time series)
"""
self.data = data.copy()
self.results = {}
def analyze_long_term_alignment(self,
indicators: List[str] = None,
window_sizes: List[int] = [12, 24, 48],
min_periods: int = 8) -> Dict:
"""
Analyze long-term alignment/divergence using rolling Spearman correlation
Args:
indicators: List of indicators to analyze. If None, use all numeric columns
window_sizes: List of rolling window sizes (in periods)
min_periods: Minimum periods required for correlation calculation
Returns:
Dictionary with alignment analysis results
"""
if indicators is None:
indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
logger.info(f"Analyzing long-term alignment for {len(indicators)} indicators")
# Calculate growth rates for all indicators
growth_data = self.data[indicators].pct_change().dropna()
# Initialize results
alignment_results = {
'rolling_correlations': {},
'alignment_summary': {},
'divergence_periods': {},
'trend_analysis': {}
}
# Analyze each pair of indicators
for i, indicator1 in enumerate(indicators):
for j, indicator2 in enumerate(indicators):
if i >= j: # Skip diagonal and avoid duplicates
continue
pair_name = f"{indicator1}_vs_{indicator2}"
logger.info(f"Analyzing alignment: {pair_name}")
# Get growth rates for this pair
pair_data = growth_data[[indicator1, indicator2]].dropna()
if len(pair_data) < min_periods:
logger.warning(f"Insufficient data for {pair_name}")
continue
# Calculate rolling Spearman correlations for different window sizes
rolling_corrs = {}
alignment_trends = {}
for window in window_sizes:
if window <= len(pair_data):
# Calculate rolling Spearman correlation
# Note: pandas rolling.corr() doesn't support method parameter
# We'll calculate Spearman correlation manually for each window
corr_values = []
for start_idx in range(len(pair_data) - window + 1):
window_data = pair_data.iloc[start_idx:start_idx + window]
if len(window_data.dropna()) >= min_periods:
corr_val = window_data.corr(method='spearman').iloc[0, 1]
if not pd.isna(corr_val):
corr_values.append(corr_val)
if corr_values:
rolling_corrs[f"window_{window}"] = corr_values
# Analyze alignment trend
alignment_trends[f"window_{window}"] = self._analyze_correlation_trend(
corr_values, pair_name, window
)
# Store results
alignment_results['rolling_correlations'][pair_name] = rolling_corrs
alignment_results['trend_analysis'][pair_name] = alignment_trends
# Identify divergence periods
alignment_results['divergence_periods'][pair_name] = self._identify_divergence_periods(
pair_data, rolling_corrs, pair_name
)
# Generate alignment summary
alignment_results['alignment_summary'] = self._generate_alignment_summary(
alignment_results['trend_analysis']
)
self.results['alignment'] = alignment_results
return alignment_results
def detect_sudden_deviations(self,
indicators: List[str] = None,
z_threshold: float = 2.0,
window_size: int = 12,
min_periods: int = 6) -> Dict:
"""
Detect sudden deviations using Z-score analysis
Args:
indicators: List of indicators to analyze. If None, use all numeric columns
z_threshold: Z-score threshold for flagging deviations
window_size: Rolling window size for Z-score calculation
min_periods: Minimum periods required for Z-score calculation
Returns:
Dictionary with deviation detection results
"""
if indicators is None:
indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
logger.info(f"Detecting sudden deviations for {len(indicators)} indicators")
# Calculate growth rates
growth_data = self.data[indicators].pct_change().dropna()
deviation_results = {
'z_scores': {},
'deviations': {},
'deviation_summary': {},
'extreme_events': {}
}
for indicator in indicators:
if indicator not in growth_data.columns:
continue
series = growth_data[indicator].dropna()
if len(series) < min_periods:
logger.warning(f"Insufficient data for {indicator}")
continue
# Calculate rolling Z-scores
rolling_mean = series.rolling(window=window_size, min_periods=min_periods).mean()
rolling_std = series.rolling(window=window_size, min_periods=min_periods).std()
# Calculate Z-scores
z_scores = (series - rolling_mean) / rolling_std
# Identify deviations
deviations = z_scores[abs(z_scores) > z_threshold]
# Store results
deviation_results['z_scores'][indicator] = z_scores
deviation_results['deviations'][indicator] = deviations
# Analyze extreme events
deviation_results['extreme_events'][indicator] = self._analyze_extreme_events(
series, z_scores, deviations, indicator
)
# Generate deviation summary
deviation_results['deviation_summary'] = self._generate_deviation_summary(
deviation_results['deviations'], deviation_results['extreme_events']
)
self.results['deviations'] = deviation_results
return deviation_results
def _analyze_correlation_trend(self, corr_values: List[float],
pair_name: str, window: int) -> Dict:
"""Analyze trend in correlation values"""
if len(corr_values) < 2:
return {'trend': 'insufficient_data', 'direction': 'unknown'}
# Calculate trend using linear regression
x = np.arange(len(corr_values))
y = np.array(corr_values)
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
# Determine trend direction and strength
if abs(slope) < 0.001:
trend_direction = 'stable'
elif slope > 0:
trend_direction = 'increasing_alignment'
else:
trend_direction = 'decreasing_alignment'
# Assess trend strength
if abs(r_value) > 0.7:
trend_strength = 'strong'
elif abs(r_value) > 0.4:
trend_strength = 'moderate'
else:
trend_strength = 'weak'
return {
'trend': trend_direction,
'strength': trend_strength,
'slope': slope,
'r_squared': r_value**2,
'p_value': p_value,
'mean_correlation': np.mean(corr_values),
'correlation_volatility': np.std(corr_values)
}
def _identify_divergence_periods(self, pair_data: pd.DataFrame,
rolling_corrs: Dict, pair_name: str) -> Dict:
"""Identify periods of significant divergence"""
divergence_periods = []
for window_name, corr_values in rolling_corrs.items():
if len(corr_values) < 4:
continue
# Find periods where correlation is negative or very low
corr_series = pd.Series(corr_values)
divergence_mask = corr_series < 0.1 # Low correlation threshold
if divergence_mask.any():
divergence_periods.append({
'window': window_name,
'divergence_count': divergence_mask.sum(),
'divergence_percentage': (divergence_mask.sum() / len(corr_series)) * 100,
'min_correlation': corr_series.min(),
'max_correlation': corr_series.max()
})
return divergence_periods
def _analyze_extreme_events(self, series: pd.Series, z_scores: pd.Series,
deviations: pd.Series, indicator: str) -> Dict:
"""Analyze extreme events for an indicator"""
if deviations.empty:
return {'count': 0, 'events': []}
events = []
for date, z_score in deviations.items():
events.append({
'date': date,
'z_score': z_score,
'growth_rate': series.loc[date],
'severity': 'extreme' if abs(z_score) > 3.0 else 'moderate'
})
# Sort by absolute Z-score
events.sort(key=lambda x: abs(x['z_score']), reverse=True)
return {
'count': len(events),
'events': events[:10], # Top 10 most extreme events
'max_z_score': max(abs(d['z_score']) for d in events),
'mean_z_score': np.mean([abs(d['z_score']) for d in events])
}
def _generate_alignment_summary(self, trend_analysis: Dict) -> Dict:
"""Generate summary of alignment trends"""
summary = {
'increasing_alignment': [],
'decreasing_alignment': [],
'stable_alignment': [],
'strong_trends': [],
'moderate_trends': [],
'weak_trends': []
}
for pair_name, trends in trend_analysis.items():
for window_name, trend_info in trends.items():
trend = trend_info['trend']
strength = trend_info['strength']
if trend == 'increasing_alignment':
summary['increasing_alignment'].append(pair_name)
elif trend == 'decreasing_alignment':
summary['decreasing_alignment'].append(pair_name)
elif trend == 'stable':
summary['stable_alignment'].append(pair_name)
if strength == 'strong':
summary['strong_trends'].append(f"{pair_name}_{window_name}")
elif strength == 'moderate':
summary['moderate_trends'].append(f"{pair_name}_{window_name}")
else:
summary['weak_trends'].append(f"{pair_name}_{window_name}")
return summary
def _generate_deviation_summary(self, deviations: Dict, extreme_events: Dict) -> Dict:
"""Generate summary of deviation analysis"""
summary = {
'total_deviations': 0,
'indicators_with_deviations': [],
'most_volatile_indicators': [],
'extreme_events_count': 0
}
for indicator, dev_series in deviations.items():
if not dev_series.empty:
summary['total_deviations'] += len(dev_series)
summary['indicators_with_deviations'].append(indicator)
# Calculate volatility (standard deviation of growth rates)
growth_series = self.data[indicator].pct_change().dropna()
volatility = growth_series.std()
summary['most_volatile_indicators'].append({
'indicator': indicator,
'volatility': volatility,
'deviation_count': len(dev_series)
})
# Sort by volatility
summary['most_volatile_indicators'].sort(
key=lambda x: x['volatility'], reverse=True
)
# Count extreme events
for indicator, events in extreme_events.items():
summary['extreme_events_count'] += events['count']
return summary
def plot_alignment_analysis(self, save_path: Optional[str] = None) -> None:
"""Plot alignment analysis results"""
if 'alignment' not in self.results:
logger.warning("No alignment analysis results to plot")
return
alignment_results = self.results['alignment']
# Create subplots
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle('Economic Indicators Alignment Analysis', fontsize=16)
# Plot 1: Rolling correlations heatmap
if alignment_results['rolling_correlations']:
# Create correlation matrix for latest values
latest_correlations = {}
for pair_name, windows in alignment_results['rolling_correlations'].items():
if 'window_12' in windows and windows['window_12']:
latest_correlations[pair_name] = windows['window_12'][-1]
if latest_correlations:
# Convert to matrix format
indicators = list(set([pair.split('_vs_')[0] for pair in latest_correlations.keys()] +
[pair.split('_vs_')[1] for pair in latest_correlations.keys()]))
corr_matrix = pd.DataFrame(index=indicators, columns=indicators, dtype=float)
for pair, corr in latest_correlations.items():
ind1, ind2 = pair.split('_vs_')
corr_matrix.loc[ind1, ind2] = float(corr)
corr_matrix.loc[ind2, ind1] = float(corr)
# Fill diagonal with 1
np.fill_diagonal(corr_matrix.values, 1.0)
# Ensure all values are numeric
corr_matrix = corr_matrix.astype(float)
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0,
ax=axes[0,0], cbar_kws={'label': 'Spearman Correlation'})
axes[0,0].set_title('Latest Rolling Correlations (12-period window)')
# Plot 2: Alignment trends
if alignment_results['trend_analysis']:
trend_data = []
for pair_name, trends in alignment_results['trend_analysis'].items():
for window_name, trend_info in trends.items():
trend_data.append({
'Pair': pair_name,
'Window': window_name,
'Trend': trend_info['trend'],
'Strength': trend_info['strength'],
'Slope': trend_info['slope']
})
if trend_data:
trend_df = pd.DataFrame(trend_data)
trend_counts = trend_df['Trend'].value_counts()
axes[0,1].pie(trend_counts.values, labels=trend_counts.index, autopct='%1.1f%%')
axes[0,1].set_title('Alignment Trend Distribution')
# Plot 3: Deviation summary
if 'deviations' in self.results:
deviation_results = self.results['deviations']
if deviation_results['deviation_summary']['most_volatile_indicators']:
vol_data = deviation_results['deviation_summary']['most_volatile_indicators']
indicators = [d['indicator'] for d in vol_data[:5]]
volatilities = [d['volatility'] for d in vol_data[:5]]
axes[1,0].bar(indicators, volatilities)
axes[1,0].set_title('Most Volatile Indicators')
axes[1,0].set_ylabel('Volatility (Std Dev of Growth Rates)')
axes[1,0].tick_params(axis='x', rotation=45)
# Plot 4: Z-score timeline
if 'deviations' in self.results:
deviation_results = self.results['deviations']
if deviation_results['z_scores']:
# Plot Z-scores for first few indicators
indicators_to_plot = list(deviation_results['z_scores'].keys())[:3]
for indicator in indicators_to_plot:
z_scores = deviation_results['z_scores'][indicator]
axes[1,1].plot(z_scores.index, z_scores.values, label=indicator, alpha=0.7)
axes[1,1].axhline(y=2, color='red', linestyle='--', alpha=0.5, label='Threshold')
axes[1,1].axhline(y=-2, color='red', linestyle='--', alpha=0.5)
axes[1,1].set_title('Z-Score Timeline')
axes[1,1].set_ylabel('Z-Score')
axes[1,1].legend()
axes[1,1].grid(True, alpha=0.3)
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.show()
def generate_insights_report(self) -> str:
"""Generate a comprehensive insights report"""
if not self.results:
return "No analysis results available. Please run alignment and deviation analysis first."
report = []
report.append("=" * 80)
report.append("ECONOMIC INDICATORS ALIGNMENT & DEVIATION ANALYSIS REPORT")
report.append("=" * 80)
report.append("")
# Alignment insights
if 'alignment' in self.results:
alignment_results = self.results['alignment']
summary = alignment_results['alignment_summary']
report.append("📊 LONG-TERM ALIGNMENT ANALYSIS")
report.append("-" * 40)
report.append(f"• Increasing Alignment Pairs: {len(summary['increasing_alignment'])}")
report.append(f"• Decreasing Alignment Pairs: {len(summary['decreasing_alignment'])}")
report.append(f"• Stable Alignment Pairs: {len(summary['stable_alignment'])}")
report.append(f"• Strong Trends: {len(summary['strong_trends'])}")
report.append("")
if summary['increasing_alignment']:
report.append("🔺 Pairs with Increasing Alignment:")
for pair in summary['increasing_alignment'][:5]:
report.append(f" - {pair}")
report.append("")
if summary['decreasing_alignment']:
report.append("🔻 Pairs with Decreasing Alignment:")
for pair in summary['decreasing_alignment'][:5]:
report.append(f" - {pair}")
report.append("")
# Deviation insights
if 'deviations' in self.results:
deviation_results = self.results['deviations']
summary = deviation_results['deviation_summary']
report.append("⚠️ SUDDEN DEVIATION ANALYSIS")
report.append("-" * 35)
report.append(f"• Total Deviations Detected: {summary['total_deviations']}")
report.append(f"• Indicators with Deviations: {len(summary['indicators_with_deviations'])}")
report.append(f"• Extreme Events: {summary['extreme_events_count']}")
report.append("")
if summary['most_volatile_indicators']:
report.append("📈 Most Volatile Indicators:")
for item in summary['most_volatile_indicators'][:5]:
report.append(f" - {item['indicator']}: {item['volatility']:.4f} volatility")
report.append("")
# Show extreme events
extreme_events = deviation_results['extreme_events']
if extreme_events:
report.append("🚨 Recent Extreme Events:")
for indicator, events in extreme_events.items():
if events['events']:
latest_event = events['events'][0]
report.append(f" - {indicator}: {latest_event['date'].strftime('%Y-%m-%d')} "
f"(Z-score: {latest_event['z_score']:.2f})")
report.append("")
report.append("=" * 80)
report.append("Analysis completed successfully.")
return "\n".join(report) |