File size: 42,248 Bytes
26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 26a8ea5 2469150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
"""
Comprehensive Analytics Pipeline
Orchestrates advanced analytics including forecasting, segmentation, statistical modeling, and insights
"""
import logging
import os
from datetime import datetime
from typing import Dict, List, Optional, Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from pathlib import Path
# Optional imports with error handling
try:
from src.analysis.economic_forecasting import EconomicForecaster
FORECASTING_AVAILABLE = True
except ImportError as e:
logging.warning(f"Economic forecasting module not available: {e}")
FORECASTING_AVAILABLE = False
try:
from src.analysis.economic_segmentation import EconomicSegmentation
SEGMENTATION_AVAILABLE = True
except ImportError as e:
logging.warning(f"Economic segmentation module not available: {e}")
SEGMENTATION_AVAILABLE = False
try:
from src.analysis.statistical_modeling import StatisticalModeling
STATISTICAL_MODELING_AVAILABLE = True
except ImportError as e:
logging.warning(f"Statistical modeling module not available: {e}")
STATISTICAL_MODELING_AVAILABLE = False
try:
from src.core.enhanced_fred_client import EnhancedFREDClient
ENHANCED_FRED_AVAILABLE = True
except ImportError as e:
logging.warning(f"Enhanced FRED client not available: {e}")
ENHANCED_FRED_AVAILABLE = False
try:
from src.analysis.mathematical_fixes import MathematicalFixes
MATHEMATICAL_FIXES_AVAILABLE = True
except ImportError as e:
logging.warning(f"Mathematical fixes module not available: {e}")
MATHEMATICAL_FIXES_AVAILABLE = False
try:
from src.analysis.alignment_divergence_analyzer import AlignmentDivergenceAnalyzer
ALIGNMENT_ANALYZER_AVAILABLE = True
except ImportError as e:
logging.warning(f"Alignment divergence analyzer not available: {e}")
ALIGNMENT_ANALYZER_AVAILABLE = False
logger = logging.getLogger(__name__)
class ComprehensiveAnalytics:
"""
Comprehensive analytics pipeline for economic data analysis
combining forecasting, segmentation, statistical modeling, and insights extraction
"""
def __init__(self, api_key: str, output_dir: str = "data/exports"):
"""
Initialize comprehensive analytics pipeline
Args:
api_key: FRED API key
output_dir: Output directory for results
"""
if not ENHANCED_FRED_AVAILABLE:
raise ImportError("Enhanced FRED client is required but not available")
self.client = EnhancedFREDClient(api_key)
self.output_dir = Path(output_dir)
self.output_dir.mkdir(parents=True, exist_ok=True)
# Initialize analytics modules
self.forecaster = None
self.segmentation = None
self.statistical_modeling = None
if MATHEMATICAL_FIXES_AVAILABLE:
self.mathematical_fixes = MathematicalFixes()
else:
self.mathematical_fixes = None
logger.warning("Mathematical fixes not available - some features may be limited")
# Results storage
self.data = None
self.raw_data = None
self.results = {}
self.reports = {}
def run_complete_analysis(self, indicators: List[str] = None,
start_date: str = '1990-01-01',
end_date: str = None,
forecast_periods: int = 4,
include_visualizations: bool = True) -> Dict:
"""
Run complete advanced analytics pipeline
Args:
indicators: List of economic indicators to analyze
start_date: Start date for analysis
end_date: End date for analysis
forecast_periods: Number of periods to forecast
include_visualizations: Whether to generate visualizations
Returns:
Dictionary containing all analysis results
"""
try:
# Step 1: Data Collection
self.raw_data = self.client.fetch_economic_data(
indicators=indicators,
start_date=start_date,
end_date=end_date,
frequency='auto'
)
# Step 2: Apply Mathematical Fixes
if self.mathematical_fixes is not None:
self.data, fix_info = self.mathematical_fixes.apply_comprehensive_fixes(
self.raw_data,
target_freq='Q',
growth_method='pct_change',
normalize_units=True,
preserve_absolute_values=True # Preserve absolute values for display
)
self.results['mathematical_fixes'] = fix_info
else:
logger.warning("Skipping mathematical fixes - module not available")
self.data = self.raw_data
# Step 2.5: Alignment & Divergence Analysis (Spearman, Z-score)
if ALIGNMENT_ANALYZER_AVAILABLE:
self.alignment_analyzer = AlignmentDivergenceAnalyzer(self.data)
alignment_results = self.alignment_analyzer.analyze_long_term_alignment()
zscore_results = self.alignment_analyzer.detect_sudden_deviations()
self.results['alignment_divergence'] = {
'alignment': alignment_results,
'zscore_anomalies': zscore_results
}
else:
logger.warning("Skipping alignment analysis - module not available")
self.results['alignment_divergence'] = {'error': 'Module not available'}
# Step 3: Data Quality Assessment
quality_report = self.client.validate_data_quality(self.data)
self.results['data_quality'] = quality_report
# Step 4: Initialize Analytics Modules
if STATISTICAL_MODELING_AVAILABLE:
self.statistical_modeling = StatisticalModeling(self.data)
else:
self.statistical_modeling = None
logger.warning("Statistical modeling not available")
if FORECASTING_AVAILABLE:
self.forecaster = EconomicForecaster(self.data)
else:
self.forecaster = None
logger.warning("Economic forecasting not available")
if SEGMENTATION_AVAILABLE:
self.segmentation = EconomicSegmentation(self.data)
else:
self.segmentation = None
logger.warning("Economic segmentation not available")
# Step 5: Statistical Modeling
if self.statistical_modeling is not None:
statistical_results = self._run_statistical_analysis()
self.results['statistical_modeling'] = statistical_results
else:
logger.warning("Skipping statistical modeling - module not available")
self.results['statistical_modeling'] = {'error': 'Module not available'}
# Step 6: Economic Forecasting
if self.forecaster is not None:
forecasting_results = self._run_forecasting_analysis(forecast_periods)
self.results['forecasting'] = forecasting_results
else:
logger.warning("Skipping economic forecasting - module not available")
self.results['forecasting'] = {'error': 'Module not available'}
# Step 7: Economic Segmentation
if self.segmentation is not None:
segmentation_results = self._run_segmentation_analysis()
self.results['segmentation'] = segmentation_results
else:
logger.warning("Skipping economic segmentation - module not available")
self.results['segmentation'] = {'error': 'Module not available'}
# Step 8: Insights Extraction
insights = self._extract_insights()
self.results['insights'] = insights
# Step 9: Generate Reports and Visualizations
if include_visualizations:
self._generate_visualizations()
self._generate_comprehensive_report()
return self.results
except Exception as e:
logger.error(f"Comprehensive analytics pipeline failed: {e}")
return {'error': f'Comprehensive analytics failed: {str(e)}'}
def _run_statistical_analysis(self) -> Dict:
"""Run statistical modeling analysis"""
if self.statistical_modeling is None:
return {'error': 'Statistical modeling module not available'}
try:
# Get available indicators for analysis
available_indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
# Ensure we have enough data for analysis
if len(available_indicators) < 2:
logger.warning("Insufficient data for statistical analysis")
return {'error': 'Insufficient data for statistical analysis'}
# Select key indicators for regression analysis
key_indicators = ['GDPC1', 'INDPRO', 'CPIAUCSL', 'FEDFUNDS', 'UNRATE']
regression_targets = [ind for ind in key_indicators if ind in available_indicators]
# If we don't have the key indicators, use the first few available
if not regression_targets and len(available_indicators) >= 2:
regression_targets = available_indicators[:2]
# Run regression analysis for each target
regression_results = {}
for target in regression_targets:
try:
# Get predictors (all other numeric columns)
predictors = [ind for ind in available_indicators if ind != target]
if len(predictors) > 0:
result = self.statistical_modeling.fit_regression_model(target, predictors)
regression_results[target] = result
else:
logger.warning(f"No predictors available for {target}")
regression_results[target] = {'error': 'No predictors available'}
except Exception as e:
logger.warning(f"Regression analysis failed for {target}: {e}")
regression_results[target] = {'error': str(e)}
# Run correlation analysis
try:
correlation_results = self.statistical_modeling.analyze_correlations(available_indicators)
except Exception as e:
logger.warning(f"Correlation analysis failed: {e}")
correlation_results = {'error': str(e)}
# Run Granger causality tests
causality_results = {}
if len(regression_targets) >= 2:
try:
# Test causality between first two indicators
target1, target2 = regression_targets[:2]
causality_result = self.statistical_modeling.perform_granger_causality(target1, target2)
causality_results[f"{target1}_vs_{target2}"] = causality_result
except Exception as e:
logger.warning(f"Granger causality test failed: {e}")
causality_results['error'] = str(e)
return {
'correlation': correlation_results,
'regression': regression_results,
'causality': causality_results
}
except Exception as e:
logger.error(f"Statistical analysis failed: {e}")
return {'error': str(e)}
def _run_forecasting_analysis(self, forecast_periods: int) -> Dict:
"""Run economic forecasting analysis"""
if self.forecaster is None:
return {'error': 'Economic forecasting module not available'}
try:
# Get available indicators for forecasting
available_indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
# Select key indicators for forecasting
key_indicators = ['GDPC1', 'INDPRO', 'RSAFS', 'CPIAUCSL', 'FEDFUNDS', 'DGS10']
forecast_targets = [ind for ind in key_indicators if ind in available_indicators]
# If we don't have the key indicators, use available ones
if not forecast_targets and len(available_indicators) > 0:
forecast_targets = available_indicators[:3] # Use first 3 available
forecasting_results = {}
for target in forecast_targets:
try:
# Get the time series data for this indicator
series_data = self.data[target].dropna()
if len(series_data) >= 12: # Need at least 12 observations
result = self.forecaster.forecast_series(
series=series_data,
model_type='auto',
forecast_periods=forecast_periods
)
# Patch: Robustly handle confidence intervals
forecast = result.get('forecast')
ci = result.get('confidence_intervals')
if ci is not None:
try:
# Try to access the first row to ensure it's a DataFrame
if hasattr(ci, 'iloc'):
_ = ci.iloc[0]
elif isinstance(ci, (list, np.ndarray)):
_ = ci[0]
except Exception as ci_e:
logger.warning(f"[PATCH] Confidence interval access error for {target}: {ci_e}")
forecasting_results[target] = result
else:
logger.warning(f"Insufficient data for forecasting {target}: {len(series_data)} observations")
forecasting_results[target] = {'error': f'Insufficient data: {len(series_data)} observations'}
except Exception as e:
logger.error(f"[PATCH] Forecasting analysis failed for {target}: {e}")
forecasting_results[target] = {'error': str(e)}
return forecasting_results
except Exception as e:
logger.error(f"Forecasting analysis failed: {e}")
return {'error': str(e)}
def _run_segmentation_analysis(self) -> Dict:
"""Run segmentation analysis"""
logger.info("Running segmentation analysis")
if self.segmentation is None:
return {'error': 'Economic segmentation module not available'}
try:
# Get available indicators for segmentation
available_indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
# Ensure we have enough data for segmentation
if len(available_indicators) < 2:
logger.warning("Insufficient data for segmentation analysis")
return {'error': 'Insufficient data for segmentation analysis'}
# Run time period clustering
time_period_clusters = {}
try:
# Adjust cluster count based on available data
n_clusters = min(3, len(available_indicators))
time_period_clusters = self.segmentation.cluster_time_periods(n_clusters=n_clusters)
except Exception as e:
logger.warning(f"Time period clustering failed: {e}")
time_period_clusters = {'error': str(e)}
# Run series clustering
series_clusters = {}
try:
# Check if we have enough samples for clustering
available_indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
if len(available_indicators) >= 4:
series_clusters = self.segmentation.cluster_economic_series(n_clusters=4)
elif len(available_indicators) >= 2:
# Use fewer clusters if we have fewer samples
n_clusters = min(3, len(available_indicators))
series_clusters = self.segmentation.cluster_economic_series(n_clusters=n_clusters)
else:
series_clusters = {'error': 'Insufficient data for series clustering'}
except Exception as e:
logger.warning(f"Series clustering failed: {e}")
series_clusters = {'error': str(e)}
return {
'time_period_clusters': time_period_clusters,
'series_clusters': series_clusters
}
except Exception as e:
logger.error(f"Segmentation analysis failed: {e}")
return {'error': str(e)}
def _extract_insights(self) -> Dict:
"""Extract key insights from all analyses"""
insights = {
'key_findings': [],
'economic_indicators': {},
'forecasting_insights': [],
'segmentation_insights': [],
'statistical_insights': []
}
try:
# Extract insights from forecasting
if 'forecasting' in self.results:
forecasting_results = self.results['forecasting']
if isinstance(forecasting_results, dict):
for indicator, result in forecasting_results.items():
if isinstance(result, dict) and 'error' not in result:
# Model performance insights
backtest = result.get('backtest', {})
if isinstance(backtest, dict) and 'error' not in backtest:
mape = backtest.get('mape', 0)
if mape < 5:
insights['forecasting_insights'].append(
f"{indicator} forecasting completed"
)
# Stationarity insights
stationarity = result.get('stationarity', {})
if isinstance(stationarity, dict) and 'is_stationary' in stationarity:
if stationarity['is_stationary']:
insights['forecasting_insights'].append(
f"{indicator} series is stationary, suitable for time series modeling"
)
else:
insights['forecasting_insights'].append(
f"{indicator} series is non-stationary, may require differencing"
)
# Extract insights from segmentation
if 'segmentation' in self.results:
segmentation_results = self.results['segmentation']
if isinstance(segmentation_results, dict):
# Time period clustering insights
if 'time_period_clusters' in segmentation_results:
time_clusters = segmentation_results['time_period_clusters']
if isinstance(time_clusters, dict) and 'error' not in time_clusters:
n_clusters = time_clusters.get('n_clusters', 0)
insights['segmentation_insights'].append(
f"Time periods clustered into {n_clusters} distinct economic regimes"
)
# Series clustering insights
if 'series_clusters' in segmentation_results:
series_clusters = segmentation_results['series_clusters']
if isinstance(series_clusters, dict) and 'error' not in series_clusters:
n_clusters = series_clusters.get('n_clusters', 0)
insights['segmentation_insights'].append(
f"Economic series clustered into {n_clusters} groups based on behavior patterns"
)
# Extract insights from statistical modeling
if 'statistical_modeling' in self.results:
stat_results = self.results['statistical_modeling']
if isinstance(stat_results, dict):
# Correlation insights
if 'correlation' in stat_results:
corr_results = stat_results['correlation']
if isinstance(corr_results, dict):
significant_correlations = corr_results.get('significant_correlations', [])
if isinstance(significant_correlations, list) and significant_correlations:
try:
strongest_corr = significant_correlations[0]
if isinstance(strongest_corr, dict):
insights['statistical_insights'].append(
f"Strongest correlation: {strongest_corr.get('variable1', 'Unknown')} ↔ {strongest_corr.get('variable2', 'Unknown')} "
f"(r={strongest_corr.get('correlation', 0):.3f})"
)
except Exception as e:
logger.warning(f"Error processing correlation insights: {e}")
insights['statistical_insights'].append("Correlation analysis completed")
# Regression insights
if 'regression' in stat_results:
reg_results = stat_results['regression']
if isinstance(reg_results, dict):
for target, result in reg_results.items():
if isinstance(result, dict) and 'error' not in result:
try:
# Handle different possible structures for R²
r2 = 0
if 'performance' in result and isinstance(result['performance'], dict):
performance = result['performance']
r2 = performance.get('r2', 0)
elif 'r2' in result:
r2 = result['r2']
elif 'model_performance' in result and isinstance(result['model_performance'], dict):
model_perf = result['model_performance']
r2 = model_perf.get('r2', 0)
if r2 > 0.7:
insights['statistical_insights'].append(
f"{target} regression model shows strong explanatory power (R² = {r2:.3f})"
)
elif r2 > 0.5:
insights['statistical_insights'].append(
f"{target} regression model shows moderate explanatory power (R² = {r2:.3f})"
)
else:
insights['statistical_insights'].append(
f"{target} regression analysis completed"
)
except Exception as e:
logger.warning(f"Error processing regression insights for {target}: {e}")
insights['statistical_insights'].append(
f"{target} regression analysis completed"
)
# Generate key findings
insights['key_findings'] = [
f"Analysis covers {len(self.data.columns)} economic indicators from {self.data.index.min().strftime('%Y-%m')} to {self.data.index.max().strftime('%Y-%m')}",
f"Dataset contains {len(self.data)} observations with {self.data.shape[0] * self.data.shape[1]} total data points",
f"Generated {len(insights['forecasting_insights'])} forecasting insights",
f"Generated {len(insights['segmentation_insights'])} segmentation insights",
f"Generated {len(insights['statistical_insights'])} statistical insights"
]
except Exception as e:
logger.error(f"Error extracting insights: {e}")
insights['key_findings'] = ["Analysis completed with some errors in insight extraction"]
return insights
def _generate_visualizations(self):
"""Generate comprehensive visualizations"""
logger.info("Generating visualizations")
try:
# Set style
plt.style.use('default') # Use default style instead of seaborn-v0_8
sns.set_palette("husl")
# 1. Time Series Plot
self._plot_time_series()
# 2. Correlation Heatmap
self._plot_correlation_heatmap()
# 3. Forecasting Results
self._plot_forecasting_results()
# 4. Segmentation Results
self._plot_segmentation_results()
# 5. Statistical Diagnostics
self._plot_statistical_diagnostics()
logger.info("Visualizations generated successfully")
except Exception as e:
logger.error(f"Error generating visualizations: {e}")
def _plot_time_series(self):
"""Plot time series of economic indicators"""
try:
fig, axes = plt.subplots(3, 2, figsize=(15, 12))
axes = axes.flatten()
key_indicators = ['GDPC1', 'INDPRO', 'RSAFS', 'CPIAUCSL', 'FEDFUNDS', 'DGS10']
for i, indicator in enumerate(key_indicators):
if indicator in self.data.columns and i < len(axes):
series = self.data[indicator].dropna()
if not series.empty:
axes[i].plot(series.index, series.values, linewidth=1.5)
axes[i].set_title(f'{indicator} - {self.client.ECONOMIC_INDICATORS.get(indicator, indicator)}')
axes[i].set_xlabel('Date')
axes[i].set_ylabel('Value')
axes[i].grid(True, alpha=0.3)
else:
axes[i].text(0.5, 0.5, f'No data for {indicator}',
ha='center', va='center', transform=axes[i].transAxes)
else:
axes[i].text(0.5, 0.5, f'{indicator} not available',
ha='center', va='center', transform=axes[i].transAxes)
plt.tight_layout()
plt.savefig(self.output_dir / 'economic_indicators_time_series.png', dpi=300, bbox_inches='tight')
plt.close()
except Exception as e:
logger.error(f"Error creating time series chart: {e}")
def _plot_correlation_heatmap(self):
"""Plot correlation heatmap"""
try:
if 'statistical_modeling' in self.results:
corr_results = self.results['statistical_modeling'].get('correlation', {})
if 'correlation_matrix' in corr_results:
corr_matrix = corr_results['correlation_matrix']
plt.figure(figsize=(12, 10))
mask = np.triu(np.ones_like(corr_matrix, dtype=bool))
sns.heatmap(corr_matrix, mask=mask, annot=True, cmap='RdBu_r', center=0,
square=True, linewidths=0.5, cbar_kws={"shrink": .8})
plt.title('Economic Indicators Correlation Matrix')
plt.tight_layout()
plt.savefig(self.output_dir / 'correlation_heatmap.png', dpi=300, bbox_inches='tight')
plt.close()
except Exception as e:
logger.error(f"Error creating correlation heatmap: {e}")
def _plot_forecasting_results(self):
"""Plot forecasting results"""
try:
if 'forecasting' in self.results:
forecasting_results = self.results['forecasting']
n_indicators = len([k for k, v in forecasting_results.items() if 'error' not in v])
if n_indicators > 0:
fig, axes = plt.subplots(n_indicators, 1, figsize=(15, 5*n_indicators))
if n_indicators == 1:
axes = [axes]
i = 0
for indicator, result in forecasting_results.items():
if 'error' not in result and i < len(axes):
series = result.get('series', pd.Series())
forecast = result.get('forecast', {})
if not series.empty and 'forecast' in forecast:
# Plot historical data
axes[i].plot(series.index, series.values, label='Historical', linewidth=2)
# Plot forecast
try:
forecast_data = forecast['forecast']
if hasattr(forecast_data, 'index'):
forecast_values = forecast_data
elif isinstance(forecast_data, (list, np.ndarray)):
forecast_values = forecast_data
else:
forecast_values = None
if forecast_values is not None:
forecast_index = pd.date_range(
start=series.index[-1] + pd.DateOffset(months=3),
periods=len(forecast_values),
freq='Q'
)
axes[i].plot(forecast_index, forecast_values, 'r--',
label='Forecast', linewidth=2)
except Exception as e:
logger.warning(f"Error plotting forecast for {indicator}: {e}")
axes[i].set_title(f'{indicator} - Forecast')
axes[i].set_xlabel('Date')
axes[i].set_ylabel('Growth Rate')
axes[i].legend()
axes[i].grid(True, alpha=0.3)
i += 1
plt.tight_layout()
plt.savefig(self.output_dir / 'forecasting_results.png', dpi=300, bbox_inches='tight')
plt.close()
except Exception as e:
logger.error(f"Error creating forecast chart: {e}")
def _plot_segmentation_results(self):
"""Plot segmentation results"""
try:
if 'segmentation' in self.results:
segmentation_results = self.results['segmentation']
# Plot time period clusters
if 'time_period_clusters' in segmentation_results:
time_clusters = segmentation_results['time_period_clusters']
if 'error' not in time_clusters and 'pca_data' in time_clusters:
pca_data = time_clusters['pca_data']
cluster_labels = time_clusters['cluster_labels']
plt.figure(figsize=(10, 8))
scatter = plt.scatter(pca_data[:, 0], pca_data[:, 1],
c=cluster_labels, cmap='viridis', alpha=0.7)
plt.colorbar(scatter)
plt.title('Time Period Clustering (PCA)')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.tight_layout()
plt.savefig(self.output_dir / 'time_period_clustering.png', dpi=300, bbox_inches='tight')
plt.close()
except Exception as e:
logger.error(f"Error creating clustering chart: {e}")
def _plot_statistical_diagnostics(self):
"""Plot statistical diagnostics"""
try:
if 'statistical_modeling' in self.results:
stat_results = self.results['statistical_modeling']
# Plot regression diagnostics
if 'regression' in stat_results:
reg_results = stat_results['regression']
# Create a summary plot of R² values
r2_values = {}
for target, result in reg_results.items():
if isinstance(result, dict) and 'error' not in result:
try:
r2 = 0
if 'performance' in result and isinstance(result['performance'], dict):
r2 = result['performance'].get('r2', 0)
elif 'r2' in result:
r2 = result['r2']
elif 'model_performance' in result and isinstance(result['model_performance'], dict):
r2 = result['model_performance'].get('r2', 0)
r2_values[target] = r2
except Exception as e:
logger.warning(f"Error extracting R² for {target}: {e}")
if r2_values:
plt.figure(figsize=(10, 6))
targets = list(r2_values.keys())
r2_scores = list(r2_values.values())
bars = plt.bar(targets, r2_scores, color='skyblue', alpha=0.7)
plt.title('Regression Model Performance (R²)')
plt.xlabel('Economic Indicators')
plt.ylabel('R² Score')
plt.ylim(0, 1)
# Add value labels on bars
for bar, score in zip(bars, r2_scores):
plt.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.01,
f'{score:.3f}', ha='center', va='bottom')
plt.tight_layout()
plt.savefig(self.output_dir / 'regression_performance.png', dpi=300, bbox_inches='tight')
plt.close()
except Exception as e:
logger.error(f"Error creating distribution charts: {e}")
def _generate_comprehensive_report(self):
"""Generate comprehensive analysis report"""
try:
report_path = self.output_dir / 'comprehensive_analysis_report.txt'
with open(report_path, 'w') as f:
f.write("=" * 80 + "\n")
f.write("FRED ML - COMPREHENSIVE ECONOMIC ANALYSIS REPORT\n")
f.write("=" * 80 + "\n\n")
f.write(f"Report Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"Analysis Period: {self.data.index.min().strftime('%Y-%m-%d')} to {self.data.index.max().strftime('%Y-%m-%d')}\n")
f.write(f"Economic Indicators: {', '.join(self.data.columns)}\n")
f.write(f"Total Observations: {len(self.data)}\n\n")
# Data Quality Summary
if 'data_quality' in self.results:
f.write("DATA QUALITY SUMMARY:\n")
f.write("-" * 40 + "\n")
quality = self.results['data_quality']
for indicator, metrics in quality.items():
if isinstance(metrics, dict):
f.write(f"{indicator}:\n")
for metric, value in metrics.items():
f.write(f" {metric}: {value}\n")
f.write("\n")
# Statistical Modeling Summary
if 'statistical_modeling' in self.results:
f.write("STATISTICAL MODELING SUMMARY:\n")
f.write("-" * 40 + "\n")
stat_results = self.results['statistical_modeling']
if 'regression' in stat_results:
f.write("Regression Analysis:\n")
for target, result in stat_results['regression'].items():
if isinstance(result, dict) and 'error' not in result:
f.write(f" {target}: ")
if 'performance' in result:
perf = result['performance']
f.write(f"R² = {perf.get('r2', 0):.3f}\n")
else:
f.write("Analysis completed\n")
f.write("\n")
# Forecasting Summary
if 'forecasting' in self.results:
f.write("FORECASTING SUMMARY:\n")
f.write("-" * 40 + "\n")
for indicator, result in self.results['forecasting'].items():
if isinstance(result, dict) and 'error' not in result:
f.write(f"{indicator}: ")
if 'backtest' in result:
backtest = result['backtest']
mape = backtest.get('mape', 0)
f.write(f"MAPE = {mape:.2f}%\n")
else:
f.write("Forecast generated\n")
f.write("\n")
# Insights Summary
if 'insights' in self.results:
f.write("KEY INSIGHTS:\n")
f.write("-" * 40 + "\n")
insights = self.results['insights']
if 'key_findings' in insights:
for finding in insights['key_findings']:
f.write(f"• {finding}\n")
f.write("\n")
f.write("=" * 80 + "\n")
f.write("END OF REPORT\n")
f.write("=" * 80 + "\n")
logger.info(f"Comprehensive report generated: {report_path}")
except Exception as e:
logger.error(f"Error generating comprehensive report: {e}")
def _generate_comprehensive_summary(self) -> str:
"""Generate a comprehensive summary of all analyses"""
try:
summary = []
summary.append("FRED ML - COMPREHENSIVE ANALYSIS SUMMARY")
summary.append("=" * 60)
summary.append(f"Analysis Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
summary.append(f"Data Period: {self.data.index.min().strftime('%Y-%m')} to {self.data.index.max().strftime('%Y-%m')}")
summary.append(f"Indicators Analyzed: {len(self.data.columns)}")
summary.append(f"Observations: {len(self.data)}")
summary.append("")
# Add key insights
if 'insights' in self.results:
insights = self.results['insights']
if 'key_findings' in insights:
summary.append("KEY FINDINGS:")
for finding in insights['key_findings'][:5]: # Limit to top 5
summary.append(f"• {finding}")
summary.append("")
return "\n".join(summary)
except Exception as e:
logger.error(f"Error generating summary: {e}")
return "Analysis completed with some errors" |