File size: 18,292 Bytes
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"""
Economic Segmentation Module
Advanced clustering analysis for economic time series and time periods
"""

import logging
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import pandas as pd
from sklearn.cluster import KMeans, AgglomerativeClustering
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.metrics import silhouette_score, calinski_harabasz_score
from sklearn.preprocessing import StandardScaler
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
from scipy.spatial.distance import pdist, squareform

logger = logging.getLogger(__name__)

class EconomicSegmentation:
    """
    Advanced economic segmentation using clustering techniques
    for both time periods and economic series
    """
    
    def __init__(self, data: pd.DataFrame):
        """
        Initialize segmentation with economic data
        
        Args:
            data: DataFrame with economic indicators
        """
        self.data = data.copy()
        self.scaler = StandardScaler()
        self.clusters = {}
        self.cluster_analysis = {}
        
    def prepare_time_period_data(self, indicators: List[str] = None, 
                                window_size: int = 4) -> pd.DataFrame:
        """
        Prepare time period data for clustering
        
        Args:
            indicators: List of indicators to use. If None, use all numeric columns
            window_size: Rolling window size for feature extraction
            
        Returns:
            DataFrame with time period features
        """
        if indicators is None:
            indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
        
        # Calculate growth rates for economic indicators
        growth_data = self.data[indicators].pct_change().dropna()
        
        # Extract features for each time period
        features = []
        feature_names = []
        
        for indicator in indicators:
            # Rolling statistics
            features.extend([
                growth_data[indicator].rolling(window_size).mean(),
                growth_data[indicator].rolling(window_size).std(),
                growth_data[indicator].rolling(window_size).min(),
                growth_data[indicator].rolling(window_size).max(),
                growth_data[indicator].rolling(window_size).skew(),
                growth_data[indicator].rolling(window_size).kurt()
            ])
            feature_names.extend([
                f"{indicator}_mean", f"{indicator}_std", f"{indicator}_min",
                f"{indicator}_max", f"{indicator}_skew", f"{indicator}_kurt"
            ])
        
        # Create feature matrix
        feature_df = pd.concat(features, axis=1)
        feature_df.columns = feature_names
        feature_df = feature_df.dropna()
        
        return feature_df
    
    def prepare_series_data(self, indicators: List[str] = None) -> pd.DataFrame:
        """
        Prepare series data for clustering (clustering the indicators themselves)
        
        Args:
            indicators: List of indicators to use. If None, use all numeric columns
            
        Returns:
            DataFrame with series features
        """
        if indicators is None:
            indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
        
        # Calculate growth rates
        growth_data = self.data[indicators].pct_change().dropna()
        
        # Extract features for each series
        series_features = {}
        
        for indicator in indicators:
            series = growth_data[indicator].dropna()
            
            # Statistical features
            series_features[indicator] = {
                'mean': series.mean(),
                'std': series.std(),
                'min': series.min(),
                'max': series.max(),
                'skew': series.skew(),
                'kurt': series.kurtosis(),
                'autocorr_1': series.autocorr(lag=1),
                'autocorr_4': series.autocorr(lag=4),
                'volatility': series.rolling(12).std().mean(),
                'trend': np.polyfit(range(len(series)), series, 1)[0]
            }
        
        return pd.DataFrame(series_features).T
    
    def find_optimal_clusters(self, data: pd.DataFrame, max_clusters: int = 10,
                             method: str = 'kmeans') -> Dict:
        """
        Find optimal number of clusters using elbow method and silhouette analysis
        
        Args:
            data: Feature data for clustering
            max_clusters: Maximum number of clusters to test
            method: Clustering method ('kmeans' or 'hierarchical')
            
        Returns:
            Dictionary with optimal cluster analysis
        """
        if len(data) < max_clusters:
            max_clusters = len(data) - 1
        
        inertias = []
        silhouette_scores = []
        calinski_scores = []
        
        for k in range(2, max_clusters + 1):
            try:
                if method == 'kmeans':
                    kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
                    labels = kmeans.fit_predict(data)
                    inertias.append(kmeans.inertia_)
                else:
                    clustering = AgglomerativeClustering(n_clusters=k)
                    labels = clustering.fit_predict(data)
                    inertias.append(0)  # Not applicable for hierarchical
                
                # Calculate scores
                if len(np.unique(labels)) > 1:
                    silhouette_scores.append(silhouette_score(data, labels))
                    calinski_scores.append(calinski_harabasz_score(data, labels))
                else:
                    silhouette_scores.append(0)
                    calinski_scores.append(0)
                    
            except Exception as e:
                logger.warning(f"Failed to cluster with k={k}: {e}")
                inertias.append(0)
                silhouette_scores.append(0)
                calinski_scores.append(0)
        
        # Find optimal k using silhouette score
        optimal_k_silhouette = np.argmax(silhouette_scores) + 2
        optimal_k_calinski = np.argmax(calinski_scores) + 2
        
        # Elbow method (for k-means)
        if method == 'kmeans' and len(inertias) > 1:
            # Calculate second derivative to find elbow
            second_derivative = np.diff(np.diff(inertias))
            optimal_k_elbow = np.argmin(second_derivative) + 3
        else:
            optimal_k_elbow = optimal_k_silhouette
        
        return {
            'inertias': inertias,
            'silhouette_scores': silhouette_scores,
            'calinski_scores': calinski_scores,
            'optimal_k_silhouette': optimal_k_silhouette,
            'optimal_k_calinski': optimal_k_calinski,
            'optimal_k_elbow': optimal_k_elbow,
            'recommended_k': optimal_k_silhouette  # Use silhouette as primary
        }
    
    def cluster_time_periods(self, indicators: List[str] = None, 
                           n_clusters: int = None, method: str = 'kmeans',
                           window_size: int = 4) -> Dict:
        """
        Cluster time periods based on economic activity patterns
        
        Args:
            indicators: List of indicators to use
            n_clusters: Number of clusters. If None, auto-detect
            method: Clustering method ('kmeans' or 'hierarchical')
            window_size: Rolling window size for feature extraction
            
        Returns:
            Dictionary with clustering results
        """
        # Prepare data
        feature_df = self.prepare_time_period_data(indicators, window_size)
        
        # Scale features
        scaled_data = self.scaler.fit_transform(feature_df)
        scaled_df = pd.DataFrame(scaled_data, index=feature_df.index, columns=feature_df.columns)
        
        # Find optimal clusters if not specified
        if n_clusters is None:
            cluster_analysis = self.find_optimal_clusters(scaled_df, method=method)
            n_clusters = cluster_analysis['recommended_k']
            logger.info(f"Auto-detected optimal clusters: {n_clusters}")
        
        # Perform clustering
        if method == 'kmeans':
            clustering = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
        else:
            clustering = AgglomerativeClustering(n_clusters=n_clusters)
        
        cluster_labels = clustering.fit_predict(scaled_df)
        
        # Add cluster labels to original data
        result_df = feature_df.copy()
        result_df['cluster'] = cluster_labels
        
        # Analyze clusters
        cluster_analysis = self.analyze_clusters(result_df, 'cluster')
        
        # Dimensionality reduction for visualization
        pca = PCA(n_components=2)
        pca_data = pca.fit_transform(scaled_data)
        
        tsne = TSNE(n_components=2, random_state=42, perplexity=min(30, len(scaled_data)-1))
        tsne_data = tsne.fit_transform(scaled_data)
        
        return {
            'data': result_df,
            'cluster_labels': cluster_labels,
            'cluster_analysis': cluster_analysis,
            'pca_data': pca_data,
            'tsne_data': tsne_data,
            'feature_importance': dict(zip(feature_df.columns, np.abs(pca.components_[0]))),
            'n_clusters': n_clusters,
            'method': method
        }
    
    def cluster_economic_series(self, indicators: List[str] = None,
                              n_clusters: int = None, method: str = 'kmeans') -> Dict:
        """
        Cluster economic series based on their characteristics
        
        Args:
            indicators: List of indicators to use
            n_clusters: Number of clusters. If None, auto-detect
            method: Clustering method ('kmeans' or 'hierarchical')
            
        Returns:
            Dictionary with clustering results
        """
        # Prepare data
        series_df = self.prepare_series_data(indicators)
        
        # Scale features
        scaled_data = self.scaler.fit_transform(series_df)
        scaled_df = pd.DataFrame(scaled_data, index=series_df.index, columns=series_df.columns)
        
        # Find optimal clusters if not specified
        if n_clusters is None:
            cluster_analysis = self.find_optimal_clusters(scaled_df, method=method)
            n_clusters = cluster_analysis['recommended_k']
            logger.info(f"Auto-detected optimal clusters: {n_clusters}")
        
        # Perform clustering
        if method == 'kmeans':
            clustering = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
        else:
            clustering = AgglomerativeClustering(n_clusters=n_clusters)
        
        cluster_labels = clustering.fit_predict(scaled_df)
        
        # Add cluster labels
        result_df = series_df.copy()
        result_df['cluster'] = cluster_labels
        
        # Analyze clusters
        cluster_analysis = self.analyze_clusters(result_df, 'cluster')
        
        # Dimensionality reduction for visualization
        pca = PCA(n_components=2)
        pca_data = pca.fit_transform(scaled_data)
        
        tsne = TSNE(n_components=2, random_state=42, perplexity=min(30, len(scaled_data)-1))
        tsne_data = tsne.fit_transform(scaled_data)
        
        return {
            'data': result_df,
            'cluster_labels': cluster_labels,
            'cluster_analysis': cluster_analysis,
            'pca_data': pca_data,
            'tsne_data': tsne_data,
            'feature_importance': dict(zip(series_df.columns, np.abs(pca.components_[0]))),
            'n_clusters': n_clusters,
            'method': method
        }
    
    def analyze_clusters(self, data: pd.DataFrame, cluster_col: str) -> Dict:
        """
        Analyze cluster characteristics
        
        Args:
            data: DataFrame with cluster labels
            cluster_col: Name of cluster column
            
        Returns:
            Dictionary with cluster analysis
        """
        feature_cols = [col for col in data.columns if col != cluster_col]
        cluster_analysis = {}
        
        for cluster_id in data[cluster_col].unique():
            cluster_data = data[data[cluster_col] == cluster_id]
            
            cluster_analysis[cluster_id] = {
                'size': len(cluster_data),
                'percentage': len(cluster_data) / len(data) * 100,
                'features': {}
            }
            
            # Analyze each feature
            for feature in feature_cols:
                feature_data = cluster_data[feature]
                cluster_analysis[cluster_id]['features'][feature] = {
                    'mean': feature_data.mean(),
                    'std': feature_data.std(),
                    'min': feature_data.min(),
                    'max': feature_data.max(),
                    'median': feature_data.median()
                }
        
        return cluster_analysis
    
    def perform_hierarchical_clustering(self, data: pd.DataFrame, 
                                     method: str = 'ward', 
                                     distance_threshold: float = None) -> Dict:
        """
        Perform hierarchical clustering with dendrogram analysis
        
        Args:
            data: Feature data for clustering
            method: Linkage method ('ward', 'complete', 'average', 'single')
            distance_threshold: Distance threshold for cutting dendrogram
            
        Returns:
            Dictionary with hierarchical clustering results
        """
        # Scale data
        scaled_data = self.scaler.fit_transform(data)
        
        # Calculate linkage matrix
        if method == 'ward':
            linkage_matrix = linkage(scaled_data, method=method)
        else:
            # For non-ward methods, we need to provide distance matrix
            distance_matrix = pdist(scaled_data)
            linkage_matrix = linkage(distance_matrix, method=method)
        
        # Determine number of clusters
        if distance_threshold is None:
            # Use elbow method on distance
            distances = linkage_matrix[:, 2]
            second_derivative = np.diff(np.diff(distances))
            optimal_threshold = distances[np.argmax(second_derivative) + 1]
        else:
            optimal_threshold = distance_threshold
        
        # Get cluster labels
        cluster_labels = fcluster(linkage_matrix, optimal_threshold, criterion='distance')
        
        # Analyze clusters
        result_df = data.copy()
        result_df['cluster'] = cluster_labels
        cluster_analysis = self.analyze_clusters(result_df, 'cluster')
        
        return {
            'linkage_matrix': linkage_matrix,
            'cluster_labels': cluster_labels,
            'distance_threshold': optimal_threshold,
            'cluster_analysis': cluster_analysis,
            'data': result_df,
            'method': method
        }
    
    def generate_segmentation_report(self, time_period_clusters: Dict = None,
                                   series_clusters: Dict = None) -> str:
        """
        Generate comprehensive segmentation report
        
        Args:
            time_period_clusters: Results from time period clustering
            series_clusters: Results from series clustering
            
        Returns:
            Formatted report string
        """
        report = "ECONOMIC SEGMENTATION REPORT\n"
        report += "=" * 50 + "\n\n"
        
        if time_period_clusters:
            report += "TIME PERIOD CLUSTERING\n"
            report += "-" * 30 + "\n"
            report += f"Method: {time_period_clusters['method']}\n"
            report += f"Number of Clusters: {time_period_clusters['n_clusters']}\n"
            report += f"Total Periods: {len(time_period_clusters['data'])}\n\n"
            
            # Cluster summary
            cluster_analysis = time_period_clusters['cluster_analysis']
            for cluster_id, analysis in cluster_analysis.items():
                report += f"Cluster {cluster_id}:\n"
                report += f"  Size: {analysis['size']} periods ({analysis['percentage']:.1f}%)\n"
                
                # Top features for this cluster
                if 'feature_importance' in time_period_clusters:
                    features = time_period_clusters['feature_importance']
                    top_features = sorted(features.items(), key=lambda x: x[1], reverse=True)[:5]
                    report += f"  Top Features: {', '.join([f[0] for f in top_features])}\n"
                
                report += "\n"
        
        if series_clusters:
            report += "ECONOMIC SERIES CLUSTERING\n"
            report += "-" * 30 + "\n"
            report += f"Method: {series_clusters['method']}\n"
            report += f"Number of Clusters: {series_clusters['n_clusters']}\n"
            report += f"Total Series: {len(series_clusters['data'])}\n\n"
            
            # Cluster summary
            cluster_analysis = series_clusters['cluster_analysis']
            for cluster_id, analysis in cluster_analysis.items():
                report += f"Cluster {cluster_id}:\n"
                report += f"  Size: {analysis['size']} series ({analysis['percentage']:.1f}%)\n"
                
                # Series in this cluster
                cluster_series = series_clusters['data'][series_clusters['data']['cluster'] == cluster_id]
                series_names = cluster_series.index.tolist()
                report += f"  Series: {', '.join(series_names)}\n"
                
                # Top features for this cluster
                if 'feature_importance' in series_clusters:
                    features = series_clusters['feature_importance']
                    top_features = sorted(features.items(), key=lambda x: x[1], reverse=True)[:5]
                    report += f"  Top Features: {', '.join([f[0] for f in top_features])}\n"
                
                report += "\n"
        
        return report