File size: 10,108 Bytes
f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e f35bff2 832348e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
#!/usr/bin/env python3
"""
FRED Data Collector v2
A tool for collecting and analyzing Federal Reserve Economic Data (FRED)
using direct API calls instead of the fredapi library
"""
import os
import warnings
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import requests
import seaborn as sns
warnings.filterwarnings("ignore")
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
from config.settings import (DEFAULT_END_DATE, DEFAULT_START_DATE,
FRED_API_KEY, OUTPUT_DIR, PLOTS_DIR)
class FREDDataCollectorV2:
def __init__(self, api_key=None):
"""Initialize the FRED data collector with API key."""
self.api_key = api_key or FRED_API_KEY
self.base_url = "https://api.stlouisfed.org/fred"
# Create output directories
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(PLOTS_DIR, exist_ok=True)
# Common economic indicators
self.indicators = {
"GDP": "GDP", # Gross Domestic Product
"UNRATE": "UNRATE", # Unemployment Rate
"CPIAUCSL": "CPIAUCSL", # Consumer Price Index
"FEDFUNDS": "FEDFUNDS", # Federal Funds Rate
"DGS10": "DGS10", # 10-Year Treasury Rate
"DEXUSEU": "DEXUSEU", # US/Euro Exchange Rate
"PAYEMS": "PAYEMS", # Total Nonfarm Payrolls
"INDPRO": "INDPRO", # Industrial Production
"M2SL": "M2SL", # M2 Money Stock
"PCE": "PCE", # Personal Consumption Expenditures
}
def get_series_info(self, series_id):
"""Get information about a FRED series."""
try:
url = f"{self.base_url}/series"
params = {
"series_id": series_id,
"api_key": self.api_key,
"file_type": "json",
}
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
series = data.get("seriess", [])
if series:
s = series[0]
return {
"id": s["id"],
"title": s["title"],
"units": s.get("units", ""),
"frequency": s.get("frequency", ""),
"last_updated": s.get("last_updated", ""),
"notes": s.get("notes", ""),
}
return None
except Exception as e:
print(f"Error getting info for {series_id}: {e}")
return None
def get_economic_data(self, series_ids, start_date=None, end_date=None):
"""Fetch economic data for specified series."""
start_date = start_date or DEFAULT_START_DATE
end_date = end_date or DEFAULT_END_DATE
data = {}
for series_id in series_ids:
try:
print(f"Fetching data for {series_id}...")
url = f"{self.base_url}/series/observations"
params = {
"series_id": series_id,
"api_key": self.api_key,
"file_type": "json",
"start_date": start_date,
"end_date": end_date,
}
response = requests.get(url, params=params)
if response.status_code == 200:
response_data = response.json()
observations = response_data.get("observations", [])
if observations:
# Convert to pandas Series
dates = []
values = []
for obs in observations:
try:
date = pd.to_datetime(obs["date"])
value = (
float(obs["value"])
if obs["value"] != "."
else np.nan
)
dates.append(date)
values.append(value)
except (ValueError, KeyError):
continue
if dates and values:
series_data = pd.Series(values, index=dates, name=series_id)
data[series_id] = series_data
print(
f"✓ Retrieved {len(series_data)} observations for {series_id}"
)
else:
print(f"✗ No valid data for {series_id}")
else:
print(f"✗ No observations found for {series_id}")
else:
print(f"✗ Error fetching {series_id}: HTTP {response.status_code}")
except Exception as e:
print(f"✗ Error fetching {series_id}: {e}")
return data
def create_dataframe(self, data_dict):
"""Convert dictionary of series data to a pandas DataFrame."""
if not data_dict:
return pd.DataFrame()
# Find the common date range
all_dates = set()
for series in data_dict.values():
all_dates.update(series.index)
# Create a complete date range
if all_dates:
date_range = pd.date_range(min(all_dates), max(all_dates), freq="D")
df = pd.DataFrame(index=date_range)
# Add each series
for series_id, series_data in data_dict.items():
df[series_id] = series_data
df.index.name = "Date"
return df
return pd.DataFrame()
def save_data(self, df, filename):
"""Save data to CSV file."""
if df.empty:
print("No data to save")
return None
filepath = os.path.join(OUTPUT_DIR, filename)
df.to_csv(filepath)
print(f"Data saved to {filepath}")
return filepath
def plot_economic_indicators(self, df, indicators_to_plot=None):
"""Create plots for economic indicators."""
if df.empty:
print("No data to plot")
return
if indicators_to_plot is None:
indicators_to_plot = [col for col in df.columns if col in df.columns]
if not indicators_to_plot:
print("No indicators to plot")
return
# Set up the plotting style
plt.style.use("default")
sns.set_palette("husl")
# Create subplots
n_indicators = len(indicators_to_plot)
fig, axes = plt.subplots(n_indicators, 1, figsize=(15, 4 * n_indicators))
if n_indicators == 1:
axes = [axes]
for i, indicator in enumerate(indicators_to_plot):
if indicator in df.columns:
ax = axes[i]
df[indicator].dropna().plot(ax=ax, linewidth=2)
# Get series info for title
info = self.get_series_info(indicator)
title = f'{indicator} - {info["title"]}' if info else indicator
ax.set_title(title)
ax.set_ylabel("Value")
ax.grid(True, alpha=0.3)
plt.tight_layout()
plot_path = os.path.join(PLOTS_DIR, "economic_indicators.png")
plt.savefig(plot_path, dpi=300, bbox_inches="tight")
plt.show()
print(f"Plot saved to {plot_path}")
def generate_summary_statistics(self, df):
"""Generate summary statistics for the economic data."""
if df.empty:
return pd.DataFrame()
summary = df.describe()
# Add additional statistics
summary.loc["missing_values"] = df.isnull().sum()
summary.loc["missing_percentage"] = (df.isnull().sum() / len(df)) * 100
return summary
def run_analysis(self, series_ids=None, start_date=None, end_date=None):
"""Run a complete analysis of economic indicators."""
if series_ids is None:
series_ids = list(self.indicators.values())
print("=== FRED Economic Data Analysis v2 ===")
print(f"API Key: {self.api_key[:8]}...")
print(
f"Date Range: {start_date or DEFAULT_START_DATE} to {end_date or DEFAULT_END_DATE}"
)
print(f"Series to analyze: {series_ids}")
print("=" * 50)
# Fetch data
data = self.get_economic_data(series_ids, start_date, end_date)
if not data:
print("No data retrieved. Please check your API key and series IDs.")
return None, None
# Create DataFrame
df = self.create_dataframe(data)
if df.empty:
print("No data to analyze")
return None, None
# Save data
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
self.save_data(df, f"fred_economic_data_{timestamp}.csv")
# Generate summary statistics
summary = self.generate_summary_statistics(df)
print("\n=== Summary Statistics ===")
print(summary)
# Create plots
print("\n=== Creating Visualizations ===")
self.plot_economic_indicators(df)
return df, summary
def main():
"""Main function to run the FRED data analysis."""
collector = FREDDataCollectorV2()
# Example: Analyze key economic indicators
key_indicators = ["GDP", "UNRATE", "CPIAUCSL", "FEDFUNDS", "DGS10"]
try:
df, summary = collector.run_analysis(series_ids=key_indicators)
if df is not None:
print("\n=== Analysis Complete ===")
print(f"Data shape: {df.shape}")
print(f"Date range: {df.index.min()} to {df.index.max()}")
else:
print("\n=== Analysis Failed ===")
except Exception as e:
print(f"Error during analysis: {e}")
if __name__ == "__main__":
main()
|