File size: 10,930 Bytes
2b395f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2469150
 
 
2b395f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#!/usr/bin/env python3
"""
FRED ML Lambda Function
AWS Lambda function for processing economic data analysis
"""

import json
import os
import boto3
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import io
import base64
from datetime import datetime, timedelta
import requests
from typing import Dict, List, Optional, Tuple
import logging

# Configure logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)

# Initialize AWS clients
aws_region = os.environ.get('AWS_REGION', 'us-east-1')
s3_client = boto3.client('s3', region_name=aws_region)
lambda_client = boto3.client('lambda', region_name=aws_region)

# Configuration
FRED_API_KEY = os.environ.get('FRED_API_KEY')
S3_BUCKET = os.environ.get('S3_BUCKET', 'fredmlv1')
FRED_BASE_URL = "https://api.stlouisfed.org/fred"

# Economic indicators mapping
ECONOMIC_INDICATORS = {
    "GDP": "GDP",
    "UNRATE": "UNRATE", 
    "CPIAUCSL": "CPIAUCSL",
    "FEDFUNDS": "FEDFUNDS",
    "DGS10": "DGS10",
    "DEXUSEU": "DEXUSEU",
    "PAYEMS": "PAYEMS",
    "INDPRO": "INDPRO",
    "M2SL": "M2SL",
    "PCE": "PCE"
}

def get_fred_data(series_id: str, start_date: str, end_date: str) -> Optional[pd.Series]:
    """Fetch data from FRED API"""
    try:
        url = f"{FRED_BASE_URL}/series/observations"
        params = {
            "series_id": series_id,
            "api_key": FRED_API_KEY,
            "file_type": "json",
            "start_date": start_date,
            "end_date": end_date,
        }

        response = requests.get(url, params=params)
        
        if response.status_code == 200:
            data = response.json()
            observations = data.get("observations", [])
            
            if observations:
                dates = []
                values = []
                
                for obs in observations:
                    try:
                        date = pd.to_datetime(obs["date"])
                        value = float(obs["value"]) if obs["value"] != "." else np.nan
                        dates.append(date)
                        values.append(value)
                    except (ValueError, KeyError):
                        continue
                
                if dates and values:
                    return pd.Series(values, index=dates, name=series_id)
        
        logger.error(f"Failed to fetch data for {series_id}")
        return None
        
    except Exception as e:
        logger.error(f"Error fetching data for {series_id}: {e}")
        return None

def create_dataframe(series_data: Dict[str, pd.Series]) -> pd.DataFrame:
    """Create DataFrame from series data"""
    if not series_data:
        return pd.DataFrame()
    
    # Find common date range
    all_dates = set()
    for series in series_data.values():
        if series is not None:
            all_dates.update(series.index)
    
    if all_dates:
        date_range = pd.date_range(min(all_dates), max(all_dates), freq='D')
        df = pd.DataFrame(index=date_range)
        
        for series_id, series_data in series_data.items():
            if series_data is not None:
                df[series_id] = series_data
        
        df.index.name = 'Date'
        return df
    
    return pd.DataFrame()

def generate_statistics(df: pd.DataFrame) -> Dict:
    """Generate statistical summary"""
    if df.empty:
        return {}
    
    stats = {}
    for column in df.columns:
        if column != 'Date':
            series = df[column].dropna()
            if not series.empty:
                stats[column] = {
                    'mean': float(series.mean()),
                    'std': float(series.std()),
                    'min': float(series.min()),
                    'max': float(series.max()),
                    'count': int(len(series)),
                    'missing': int(df[column].isna().sum())
                }
    
    return stats

def create_correlation_matrix(df: pd.DataFrame) -> Dict:
    """Create correlation matrix"""
    if df.empty:
        return {}
    
    corr_matrix = df.corr()
    return corr_matrix.to_dict()

def create_visualizations(df: pd.DataFrame, s3_bucket: str, report_id: str) -> List[str]:
    """Create and upload visualizations to S3"""
    if df.empty:
        return []
    
    visualization_keys = []
    
    try:
        # Time series plot
        plt.figure(figsize=(12, 8))
        for column in df.columns:
            if column != 'Date':
                plt.plot(df.index, df[column], label=column, linewidth=2)
        
        plt.title('Economic Indicators Time Series')
        plt.xlabel('Date')
        plt.ylabel('Value')
        plt.legend()
        plt.grid(True, alpha=0.3)
        plt.xticks(rotation=45)
        plt.tight_layout()
        
        # Save to S3
        img_buffer = io.BytesIO()
        plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight')
        img_buffer.seek(0)
        
        time_series_key = f"visualizations/{report_id}/time_series.png"
        s3_client.put_object(
            Bucket=s3_bucket,
            Key=time_series_key,
            Body=img_buffer.getvalue(),
            ContentType='image/png'
        )
        visualization_keys.append(time_series_key)
        plt.close()
        
        # Correlation heatmap
        if len(df.columns) > 1:
            plt.figure(figsize=(10, 8))
            corr_matrix = df.corr()
            sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
            plt.title('Correlation Matrix')
            plt.tight_layout()
            
            img_buffer = io.BytesIO()
            plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight')
            img_buffer.seek(0)
            
            correlation_key = f"visualizations/{report_id}/correlation.png"
            s3_client.put_object(
                Bucket=s3_bucket,
                Key=correlation_key,
                Body=img_buffer.getvalue(),
                ContentType='image/png'
            )
            visualization_keys.append(correlation_key)
            plt.close()
        
        # Distribution plots
        for column in df.columns:
            if column != 'Date':
                plt.figure(figsize=(8, 6))
                plt.hist(df[column].dropna(), bins=30, alpha=0.7, edgecolor='black')
                plt.title(f'Distribution of {column}')
                plt.xlabel('Value')
                plt.ylabel('Frequency')
                plt.grid(True, alpha=0.3)
                plt.tight_layout()
                
                img_buffer = io.BytesIO()
                plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight')
                img_buffer.seek(0)
                
                dist_key = f"visualizations/{report_id}/distribution_{column}.png"
                s3_client.put_object(
                    Bucket=s3_bucket,
                    Key=dist_key,
                    Body=img_buffer.getvalue(),
                    ContentType='image/png'
                )
                visualization_keys.append(dist_key)
                plt.close()
    
    except Exception as e:
        logger.error(f"Error creating visualizations: {e}")
    
    return visualization_keys

def save_report_to_s3(report_data: Dict, s3_bucket: str, report_id: str) -> str:
    """Save report data to S3"""
    try:
        report_key = f"reports/{report_id}/report.json"
        
        s3_client.put_object(
            Bucket=s3_bucket,
            Key=report_key,
            Body=json.dumps(report_data, default=str),
            ContentType='application/json'
        )
        
        return report_key
    except Exception as e:
        logger.error(f"Error saving report to S3: {e}")
        raise

def lambda_handler(event: Dict, context) -> Dict:
    """Main Lambda handler function"""
    try:
        logger.info(f"Received event: {json.dumps(event)}")
        
        # Parse input
        if isinstance(event.get('body'), str):
            payload = json.loads(event['body'])
        else:
            payload = event
        
        indicators = payload.get('indicators', ['GDP', 'UNRATE', 'CPIAUCSL'])
        start_date = payload.get('start_date', (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d'))
        end_date = payload.get('end_date', datetime.now().strftime('%Y-%m-%d'))
        options = payload.get('options', {})
        
        # Generate report ID
        report_id = f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
        
        logger.info(f"Processing analysis for indicators: {indicators}")
        logger.info(f"Date range: {start_date} to {end_date}")
        
        # Fetch data from FRED
        series_data = {}
        for indicator in indicators:
            if indicator in ECONOMIC_INDICATORS:
                series_id = ECONOMIC_INDICATORS[indicator]
                data = get_fred_data(series_id, start_date, end_date)
                if data is not None:
                    series_data[indicator] = data
                    logger.info(f"Successfully fetched data for {indicator}")
                else:
                    logger.warning(f"Failed to fetch data for {indicator}")
        
        # Create DataFrame
        df = create_dataframe(series_data)
        
        if df.empty:
            raise ValueError("No data available for analysis")
        
        # Generate analysis results
        report_data = {
            'report_id': report_id,
            'timestamp': datetime.now().isoformat(),
            'indicators': indicators,
            'start_date': start_date,
            'end_date': end_date,
            'total_observations': len(df),
            'data_shape': df.shape,
            'statistics': generate_statistics(df),
            'correlation_matrix': create_correlation_matrix(df),
            'data': df.reset_index().to_dict('records')
        }
        
        # Create visualizations if requested
        if options.get('visualizations', True):
            visualization_keys = create_visualizations(df, S3_BUCKET, report_id)
            report_data['visualizations'] = visualization_keys
        
        # Save report to S3
        report_key = save_report_to_s3(report_data, S3_BUCKET, report_id)
        
        logger.info(f"Analysis completed successfully. Report saved to: {report_key}")
        
        return {
            'statusCode': 200,
            'body': json.dumps({
                'status': 'success',
                'report_id': report_id,
                'report_key': report_key,
                'message': 'Analysis completed successfully'
            })
        }
        
    except Exception as e:
        logger.error(f"Error in lambda_handler: {e}")
        return {
            'statusCode': 500,
            'body': json.dumps({
                'status': 'error',
                'message': str(e)
            })
        }