File size: 14,443 Bytes
6ce20d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
#!/usr/bin/env python3
"""
Local Chart Generator for FRED ML
Creates comprehensive economic visualizations and stores them locally
"""
import io
import json
import os
import sys
from datetime import datetime
from typing import Dict, List, Optional, Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
# Add parent directory to path for config import
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(current_dir))
if parent_dir not in sys.path:
sys.path.insert(0, parent_dir)
# Also add the project root (two levels up from src)
project_root = os.path.dirname(parent_dir)
if project_root not in sys.path:
sys.path.insert(0, project_root)
# Use hardcoded defaults to avoid import issues
DEFAULT_OUTPUT_DIR = 'data/processed'
DEFAULT_PLOTS_DIR = 'data/exports'
# Set style for matplotlib
plt.style.use('seaborn-v0_8')
sns.set_palette("husl")
class LocalChartGenerator:
"""Generate comprehensive economic visualizations locally"""
def __init__(self, output_dir: str = None):
if output_dir is None:
# Use absolute path to avoid relative path issues
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(current_dir))
output_dir = os.path.join(project_root, DEFAULT_PLOTS_DIR, 'visualizations')
self.output_dir = output_dir
os.makedirs(output_dir, exist_ok=True)
self.chart_paths = []
def create_time_series_chart(self, df: pd.DataFrame, title: str = "Economic Indicators") -> str:
"""Create time series chart and save locally"""
try:
fig, ax = plt.subplots(figsize=(15, 8))
for column in df.columns:
if column != 'Date':
ax.plot(df.index, df[column], label=column, linewidth=2)
ax.set_title(title, fontsize=16, fontweight='bold')
ax.set_xlabel('Date', fontsize=12)
ax.set_ylabel('Value', fontsize=12)
ax.legend(fontsize=10)
ax.grid(True, alpha=0.3)
plt.xticks(rotation=45)
plt.tight_layout()
# Save locally
chart_filename = f"time_series_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
chart_path = os.path.join(self.output_dir, chart_filename)
plt.savefig(chart_path, format='png', dpi=300, bbox_inches='tight')
plt.close()
self.chart_paths.append(chart_path)
return chart_path
except Exception as e:
print(f"Error creating time series chart: {e}")
return None
def create_correlation_heatmap(self, df: pd.DataFrame) -> str:
"""Create correlation heatmap and save locally"""
try:
corr_matrix = df.corr()
fig, ax = plt.subplots(figsize=(12, 10))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0,
square=True, linewidths=0.5, cbar_kws={"shrink": .8})
plt.title('Economic Indicators Correlation Matrix', fontsize=16, fontweight='bold')
plt.tight_layout()
# Save locally
chart_filename = f"correlation_heatmap_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
chart_path = os.path.join(self.output_dir, chart_filename)
plt.savefig(chart_path, format='png', dpi=300, bbox_inches='tight')
plt.close()
self.chart_paths.append(chart_path)
return chart_path
except Exception as e:
print(f"Error creating correlation heatmap: {e}")
return None
def create_distribution_charts(self, df: pd.DataFrame) -> List[str]:
"""Create distribution charts for each indicator"""
chart_paths = []
try:
for column in df.columns:
if column != 'Date':
fig, ax = plt.subplots(figsize=(10, 6))
# Histogram with KDE
sns.histplot(df[column].dropna(), kde=True, ax=ax)
ax.set_title(f'Distribution of {column}', fontsize=14, fontweight='bold')
ax.set_xlabel(column, fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
plt.tight_layout()
# Save locally
chart_filename = f"distribution_{column}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
chart_path = os.path.join(self.output_dir, chart_filename)
plt.savefig(chart_path, format='png', dpi=300, bbox_inches='tight')
plt.close()
chart_paths.append(chart_path)
self.chart_paths.append(chart_path)
return chart_paths
except Exception as e:
print(f"Error creating distribution charts: {e}")
return []
def create_pca_visualization(self, df: pd.DataFrame, n_components: int = 2) -> str:
"""Create PCA visualization and save locally"""
try:
# Prepare data
df_clean = df.dropna()
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df_clean)
# Perform PCA
pca = PCA(n_components=n_components)
pca_result = pca.fit_transform(scaled_data)
# Create visualization
fig, ax = plt.subplots(figsize=(12, 8))
if n_components == 2:
scatter = ax.scatter(pca_result[:, 0], pca_result[:, 1], alpha=0.6)
ax.set_xlabel(f'PC1 ({pca.explained_variance_ratio_[0]:.1%} variance)', fontsize=12)
ax.set_ylabel(f'PC2 ({pca.explained_variance_ratio_[1]:.1%} variance)', fontsize=12)
else:
# For 3D or more, show first two components
scatter = ax.scatter(pca_result[:, 0], pca_result[:, 1], alpha=0.6)
ax.set_xlabel(f'PC1 ({pca.explained_variance_ratio_[0]:.1%} variance)', fontsize=12)
ax.set_ylabel(f'PC2 ({pca.explained_variance_ratio_[1]:.1%} variance)', fontsize=12)
ax.set_title('PCA Visualization of Economic Indicators', fontsize=16, fontweight='bold')
ax.grid(True, alpha=0.3)
plt.tight_layout()
# Save locally
chart_filename = f"pca_visualization_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
chart_path = os.path.join(self.output_dir, chart_filename)
plt.savefig(chart_path, format='png', dpi=300, bbox_inches='tight')
plt.close()
self.chart_paths.append(chart_path)
return chart_path
except Exception as e:
print(f"Error creating PCA visualization: {e}")
return None
def create_forecast_chart(self, historical_data: pd.Series, forecast_data: List[float],
title: str = "Economic Forecast") -> str:
"""Create forecast chart and save locally"""
try:
fig, ax = plt.subplots(figsize=(15, 8))
# Plot historical data
ax.plot(historical_data.index, historical_data.values,
label='Historical', linewidth=2, color='blue')
# Plot forecast
forecast_index = pd.date_range(
start=historical_data.index[-1] + pd.DateOffset(months=1),
periods=len(forecast_data),
freq='M'
)
ax.plot(forecast_index, forecast_data,
label='Forecast', linewidth=2, color='red', linestyle='--')
ax.set_title(title, fontsize=16, fontweight='bold')
ax.set_xlabel('Date', fontsize=12)
ax.set_ylabel('Value', fontsize=12)
ax.legend(fontsize=12)
ax.grid(True, alpha=0.3)
plt.xticks(rotation=45)
plt.tight_layout()
# Save locally
chart_filename = f"forecast_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
chart_path = os.path.join(self.output_dir, chart_filename)
plt.savefig(chart_path, format='png', dpi=300, bbox_inches='tight')
plt.close()
self.chart_paths.append(chart_path)
return chart_path
except Exception as e:
print(f"Error creating forecast chart: {e}")
return None
def create_clustering_chart(self, df: pd.DataFrame, n_clusters: int = 3) -> str:
"""Create clustering visualization and save locally"""
try:
from sklearn.cluster import KMeans
# Prepare data
df_clean = df.dropna()
# Check for sufficient data
if df_clean.empty or df_clean.shape[0] < n_clusters or df_clean.shape[1] < 2:
print(f"Error creating clustering chart: Not enough data for clustering (rows: {df_clean.shape[0]}, cols: {df_clean.shape[1]})")
return None
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df_clean)
# Perform clustering
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
clusters = kmeans.fit_predict(scaled_data)
# PCA for visualization
pca = PCA(n_components=2)
pca_result = pca.fit_transform(scaled_data)
# Create visualization
fig, ax = plt.subplots(figsize=(12, 8))
scatter = ax.scatter(pca_result[:, 0], pca_result[:, 1],
c=clusters, cmap='viridis', alpha=0.6)
# Add cluster centers
centers_pca = pca.transform(kmeans.cluster_centers_)
ax.scatter(centers_pca[:, 0], centers_pca[:, 1],
c='red', marker='x', s=200, linewidths=3, label='Cluster Centers')
ax.set_title(f'K-Means Clustering (k={n_clusters})', fontsize=16, fontweight='bold')
ax.set_xlabel(f'PC1 ({pca.explained_variance_ratio_[0]:.1%} variance)', fontsize=12)
ax.set_ylabel(f'PC2 ({pca.explained_variance_ratio_[1]:.1%} variance)', fontsize=12)
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
# Save locally
chart_filename = f"clustering_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
chart_path = os.path.join(self.output_dir, chart_filename)
plt.savefig(chart_path, format='png', dpi=300, bbox_inches='tight')
plt.close()
self.chart_paths.append(chart_path)
return chart_path
except Exception as e:
print(f"Error creating clustering chart: {e}")
return None
def generate_comprehensive_visualizations(self, df: pd.DataFrame, analysis_type: str = "comprehensive") -> Dict[str, str]:
"""Generate comprehensive visualizations based on analysis type"""
visualizations = {}
try:
# Always create time series and correlation charts
visualizations['time_series'] = self.create_time_series_chart(df)
visualizations['correlation'] = self.create_correlation_heatmap(df)
visualizations['distributions'] = self.create_distribution_charts(df)
if analysis_type in ["comprehensive", "statistical"]:
# Add PCA visualization
visualizations['pca'] = self.create_pca_visualization(df)
# Add clustering
visualizations['clustering'] = self.create_clustering_chart(df)
if analysis_type in ["comprehensive", "forecasting"]:
# Add forecast visualization (using sample data)
sample_series = df.iloc[:, 0] if not df.empty else pd.Series([1, 2, 3, 4, 5])
sample_forecast = [sample_series.iloc[-1] * 1.02, sample_series.iloc[-1] * 1.04]
visualizations['forecast'] = self.create_forecast_chart(sample_series, sample_forecast)
# Store visualization metadata
metadata = {
'analysis_type': analysis_type,
'timestamp': datetime.now().isoformat(),
'charts_generated': list(visualizations.keys()),
'output_dir': self.output_dir
}
# Save metadata locally
metadata_filename = f"metadata_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
metadata_path = os.path.join(self.output_dir, metadata_filename)
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
return visualizations
except Exception as e:
print(f"Error generating comprehensive visualizations: {e}")
return {}
def list_available_charts(self) -> List[Dict]:
"""List all available charts in local directory"""
try:
charts = []
if os.path.exists(self.output_dir):
for filename in os.listdir(self.output_dir):
if filename.endswith('.png'):
filepath = os.path.join(self.output_dir, filename)
stat = os.stat(filepath)
charts.append({
'key': filename,
'path': filepath,
'last_modified': datetime.fromtimestamp(stat.st_mtime),
'size': stat.st_size
})
return sorted(charts, key=lambda x: x['last_modified'], reverse=True)
except Exception as e:
print(f"Error listing charts: {e}")
return [] |