FREDML / src /analysis /economic_forecasting.py
Edwin Salguero
feat: Integrate advanced analytics and enterprise UI
26a8ea5
raw
history blame
13.6 kB
"""
Economic Forecasting Module
Advanced time series forecasting for economic indicators using ARIMA/ETS models
"""
import logging
import warnings
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import pandas as pd
from scipy import stats
from sklearn.metrics import mean_absolute_error, mean_squared_error
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller
logger = logging.getLogger(__name__)
class EconomicForecaster:
"""
Advanced economic forecasting using ARIMA and ETS models
with comprehensive backtesting and performance evaluation
"""
def __init__(self, data: pd.DataFrame):
"""
Initialize forecaster with economic data
Args:
data: DataFrame with economic indicators (GDPC1, INDPRO, RSAFS, etc.)
"""
self.data = data.copy()
self.forecasts = {}
self.backtest_results = {}
self.model_performance = {}
def prepare_data(self, target_series: str, frequency: str = 'Q') -> pd.Series:
"""
Prepare time series data for forecasting
Args:
target_series: Series name to forecast
frequency: Data frequency ('Q' for quarterly, 'M' for monthly)
Returns:
Prepared time series
"""
if target_series not in self.data.columns:
raise ValueError(f"Series {target_series} not found in data")
series = self.data[target_series].dropna()
# Resample to desired frequency
if frequency == 'Q':
series = series.resample('Q').mean()
elif frequency == 'M':
series = series.resample('M').mean()
# Calculate growth rates for economic indicators
if target_series in ['GDPC1', 'INDPRO', 'RSAFS']:
series = series.pct_change().dropna()
return series
def check_stationarity(self, series: pd.Series) -> Dict:
"""
Perform Augmented Dickey-Fuller test for stationarity
Args:
series: Time series to test
Returns:
Dictionary with test results
"""
result = adfuller(series.dropna())
return {
'adf_statistic': result[0],
'p_value': result[1],
'critical_values': result[4],
'is_stationary': result[1] < 0.05
}
def decompose_series(self, series: pd.Series, period: int = 4) -> Dict:
"""
Decompose time series into trend, seasonal, and residual components
Args:
series: Time series to decompose
period: Seasonal period (4 for quarterly, 12 for monthly)
Returns:
Dictionary with decomposition components
"""
decomposition = seasonal_decompose(series.dropna(), period=period, extrapolate_trend='freq')
return {
'trend': decomposition.trend,
'seasonal': decomposition.seasonal,
'residual': decomposition.resid,
'observed': decomposition.observed
}
def fit_arima_model(self, series: pd.Series, order: Tuple[int, int, int] = None) -> ARIMA:
"""
Fit ARIMA model to time series
Args:
series: Time series data
order: ARIMA order (p, d, q). If None, auto-detect
Returns:
Fitted ARIMA model
"""
if order is None:
# Auto-detect order using AIC minimization
best_aic = np.inf
best_order = (1, 1, 1)
for p in range(0, 3):
for d in range(0, 2):
for q in range(0, 3):
try:
model = ARIMA(series, order=(p, d, q))
fitted_model = model.fit()
if fitted_model.aic < best_aic:
best_aic = fitted_model.aic
best_order = (p, d, q)
except:
continue
order = best_order
logger.info(f"Auto-detected ARIMA order: {order}")
model = ARIMA(series, order=order)
fitted_model = model.fit()
return fitted_model
def fit_ets_model(self, series: pd.Series, seasonal_periods: int = 4) -> ExponentialSmoothing:
"""
Fit ETS (Exponential Smoothing) model to time series
Args:
series: Time series data
seasonal_periods: Number of seasonal periods
Returns:
Fitted ETS model
"""
model = ExponentialSmoothing(
series,
seasonal_periods=seasonal_periods,
trend='add',
seasonal='add'
)
fitted_model = model.fit()
return fitted_model
def forecast_series(self, series: pd.Series, model_type: str = 'auto',
forecast_periods: int = 4) -> Dict:
"""
Forecast time series using specified model
Args:
series: Time series to forecast
model_type: 'arima', 'ets', or 'auto'
forecast_periods: Number of periods to forecast
Returns:
Dictionary with forecast results
"""
if model_type == 'auto':
# Try both models and select the one with better AIC
try:
arima_model = self.fit_arima_model(series)
arima_aic = arima_model.aic
except:
arima_aic = np.inf
try:
ets_model = self.fit_ets_model(series)
ets_aic = ets_model.aic
except:
ets_aic = np.inf
if arima_aic < ets_aic:
model_type = 'arima'
model = arima_model
else:
model_type = 'ets'
model = ets_model
elif model_type == 'arima':
model = self.fit_arima_model(series)
elif model_type == 'ets':
model = self.fit_ets_model(series)
else:
raise ValueError("model_type must be 'arima', 'ets', or 'auto'")
# Generate forecast
forecast = model.forecast(steps=forecast_periods)
# Calculate confidence intervals
if model_type == 'arima':
forecast_ci = model.get_forecast(steps=forecast_periods).conf_int()
else:
# For ETS, use simple confidence intervals
forecast_std = series.std()
forecast_ci = pd.DataFrame({
'lower': forecast - 1.96 * forecast_std,
'upper': forecast + 1.96 * forecast_std
})
return {
'model': model,
'model_type': model_type,
'forecast': forecast,
'confidence_intervals': forecast_ci,
'aic': model.aic if hasattr(model, 'aic') else None
}
def backtest_forecast(self, series: pd.Series, model_type: str = 'auto',
train_size: float = 0.8, test_periods: int = 8) -> Dict:
"""
Perform backtesting of forecasting models
Args:
series: Time series to backtest
model_type: Model type to use
train_size: Proportion of data for training
test_periods: Number of periods to test
Returns:
Dictionary with backtest results
"""
n = len(series)
train_end = int(n * train_size)
actual_values = []
predicted_values = []
errors = []
for i in range(test_periods):
if train_end + i >= n:
break
# Use expanding window
train_data = series.iloc[:train_end + i]
test_value = series.iloc[train_end + i]
try:
forecast_result = self.forecast_series(train_data, model_type, 1)
prediction = forecast_result['forecast'].iloc[0]
actual_values.append(test_value)
predicted_values.append(prediction)
errors.append(test_value - prediction)
except Exception as e:
logger.warning(f"Forecast failed at step {i}: {e}")
continue
if not actual_values:
return {'error': 'No successful forecasts generated'}
# Calculate performance metrics
mae = mean_absolute_error(actual_values, predicted_values)
mse = mean_squared_error(actual_values, predicted_values)
rmse = np.sqrt(mse)
mape = np.mean(np.abs(np.array(actual_values) - np.array(predicted_values)) / np.abs(actual_values)) * 100
return {
'actual_values': actual_values,
'predicted_values': predicted_values,
'errors': errors,
'mae': mae,
'mse': mse,
'rmse': rmse,
'mape': mape,
'test_periods': len(actual_values)
}
def forecast_economic_indicators(self, indicators: List[str] = None) -> Dict:
"""
Forecast multiple economic indicators
Args:
indicators: List of indicators to forecast. If None, use default set
Returns:
Dictionary with forecasts for all indicators
"""
if indicators is None:
indicators = ['GDPC1', 'INDPRO', 'RSAFS']
results = {}
for indicator in indicators:
try:
# Prepare data
series = self.prepare_data(indicator)
# Check stationarity
stationarity = self.check_stationarity(series)
# Decompose series
decomposition = self.decompose_series(series)
# Generate forecast
forecast_result = self.forecast_series(series)
# Perform backtest
backtest_result = self.backtest_forecast(series)
results[indicator] = {
'stationarity': stationarity,
'decomposition': decomposition,
'forecast': forecast_result,
'backtest': backtest_result,
'series': series
}
logger.info(f"Successfully forecasted {indicator}")
except Exception as e:
logger.error(f"Failed to forecast {indicator}: {e}")
results[indicator] = {'error': str(e)}
return results
def generate_forecast_report(self, forecasts: Dict) -> str:
"""
Generate comprehensive forecast report
Args:
forecasts: Dictionary with forecast results
Returns:
Formatted report string
"""
report = "ECONOMIC FORECASTING REPORT\n"
report += "=" * 50 + "\n\n"
for indicator, result in forecasts.items():
if 'error' in result:
report += f"{indicator}: ERROR - {result['error']}\n\n"
continue
report += f"INDICATOR: {indicator}\n"
report += "-" * 30 + "\n"
# Stationarity results
stationarity = result['stationarity']
report += f"Stationarity Test (ADF):\n"
report += f" ADF Statistic: {stationarity['adf_statistic']:.4f}\n"
report += f" P-value: {stationarity['p_value']:.4f}\n"
report += f" Is Stationary: {stationarity['is_stationary']}\n\n"
# Model information
forecast = result['forecast']
report += f"Model: {forecast['model_type'].upper()}\n"
if forecast['aic']:
report += f"AIC: {forecast['aic']:.4f}\n"
report += f"Forecast Periods: {len(forecast['forecast'])}\n\n"
# Backtest results
backtest = result['backtest']
if 'error' not in backtest:
report += f"Backtest Performance:\n"
report += f" MAE: {backtest['mae']:.4f}\n"
report += f" RMSE: {backtest['rmse']:.4f}\n"
report += f" MAPE: {backtest['mape']:.2f}%\n"
report += f" Test Periods: {backtest['test_periods']}\n\n"
# Forecast values
report += f"Forecast Values:\n"
for i, value in enumerate(forecast['forecast']):
ci = forecast['confidence_intervals']
lower = ci.iloc[i]['lower'] if 'lower' in ci.columns else 'N/A'
upper = ci.iloc[i]['upper'] if 'upper' in ci.columns else 'N/A'
report += f" Period {i+1}: {value:.4f} [{lower:.4f}, {upper:.4f}]\n"
report += "\n" + "=" * 50 + "\n\n"
return report