FREDML / src /core /enhanced_fred_client.py
Edwin Salguero
feat: Integrate advanced analytics and enterprise UI
26a8ea5
raw
history blame
12.7 kB
"""
Enhanced FRED Client
Advanced data collection for comprehensive economic indicators
"""
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Union
import pandas as pd
from fredapi import Fred
logger = logging.getLogger(__name__)
class EnhancedFREDClient:
"""
Enhanced FRED API client for comprehensive economic data collection
with support for multiple frequencies and advanced data processing
"""
# Economic indicators mapping
ECONOMIC_INDICATORS = {
# Output & Activity
'GDPC1': 'Real Gross Domestic Product (chained 2012 dollars)',
'INDPRO': 'Industrial Production Index',
'RSAFS': 'Retail Sales',
'TCU': 'Capacity Utilization',
'PAYEMS': 'Total Nonfarm Payrolls',
# Prices & Inflation
'CPIAUCSL': 'Consumer Price Index for All Urban Consumers',
'PCE': 'Personal Consumption Expenditures',
# Financial & Monetary
'FEDFUNDS': 'Federal Funds Rate',
'DGS10': '10-Year Treasury Rate',
'M2SL': 'M2 Money Stock',
# International
'DEXUSEU': 'US/Euro Exchange Rate',
# Labor
'UNRATE': 'Unemployment Rate'
}
def __init__(self, api_key: str):
"""
Initialize enhanced FRED client
Args:
api_key: FRED API key
"""
self.fred = Fred(api_key=api_key)
self.data_cache = {}
def fetch_economic_data(self, indicators: List[str] = None,
start_date: str = '1990-01-01',
end_date: str = None,
frequency: str = 'auto') -> pd.DataFrame:
"""
Fetch comprehensive economic data
Args:
indicators: List of indicators to fetch. If None, fetch all available
start_date: Start date for data collection
end_date: End date for data collection. If None, use current date
frequency: Data frequency ('auto', 'M', 'Q', 'A')
Returns:
DataFrame with economic indicators
"""
if indicators is None:
indicators = list(self.ECONOMIC_INDICATORS.keys())
if end_date is None:
end_date = datetime.now().strftime('%Y-%m-%d')
logger.info(f"Fetching economic data for {len(indicators)} indicators")
logger.info(f"Date range: {start_date} to {end_date}")
data_dict = {}
for indicator in indicators:
try:
if indicator in self.ECONOMIC_INDICATORS:
series_data = self._fetch_series(indicator, start_date, end_date, frequency)
if series_data is not None and not series_data.empty:
data_dict[indicator] = series_data
logger.info(f"Successfully fetched {indicator}: {len(series_data)} observations")
else:
logger.warning(f"No data available for {indicator}")
else:
logger.warning(f"Unknown indicator: {indicator}")
except Exception as e:
logger.error(f"Failed to fetch {indicator}: {e}")
if not data_dict:
raise ValueError("No data could be fetched for any indicators")
# Combine all series into a single DataFrame
combined_data = pd.concat(data_dict.values(), axis=1)
combined_data.columns = list(data_dict.keys())
# Sort by date
combined_data = combined_data.sort_index()
logger.info(f"Combined data shape: {combined_data.shape}")
logger.info(f"Date range: {combined_data.index.min()} to {combined_data.index.max()}")
return combined_data
def _fetch_series(self, series_id: str, start_date: str, end_date: str,
frequency: str) -> Optional[pd.Series]:
"""
Fetch individual series with frequency handling
Args:
series_id: FRED series ID
start_date: Start date
end_date: End date
frequency: Data frequency
Returns:
Series data or None if failed
"""
try:
# Determine appropriate frequency for each series
if frequency == 'auto':
freq = self._get_appropriate_frequency(series_id)
else:
freq = frequency
# Fetch data
series = self.fred.get_series(
series_id,
observation_start=start_date,
observation_end=end_date,
frequency=freq
)
if series.empty:
logger.warning(f"No data returned for {series_id}")
return None
# Handle frequency conversion if needed
if frequency == 'auto':
series = self._standardize_frequency(series, series_id)
return series
except Exception as e:
logger.error(f"Error fetching {series_id}: {e}")
return None
def _get_appropriate_frequency(self, series_id: str) -> str:
"""
Get appropriate frequency for a series based on its characteristics
Args:
series_id: FRED series ID
Returns:
Appropriate frequency string
"""
# Quarterly series
quarterly_series = ['GDPC1', 'PCE']
# Monthly series (most common)
monthly_series = ['INDPRO', 'RSAFS', 'TCU', 'PAYEMS', 'CPIAUCSL',
'FEDFUNDS', 'DGS10', 'M2SL', 'DEXUSEU', 'UNRATE']
if series_id in quarterly_series:
return 'Q'
elif series_id in monthly_series:
return 'M'
else:
return 'M' # Default to monthly
def _standardize_frequency(self, series: pd.Series, series_id: str) -> pd.Series:
"""
Standardize frequency for consistent analysis
Args:
series: Time series data
series_id: Series ID for context
Returns:
Standardized series
"""
# For quarterly analysis, convert monthly to quarterly
if series_id in ['INDPRO', 'RSAFS', 'TCU', 'PAYEMS', 'CPIAUCSL',
'FEDFUNDS', 'DGS10', 'M2SL', 'DEXUSEU', 'UNRATE']:
# Use end-of-quarter values for most series
if series_id in ['INDPRO', 'RSAFS', 'TCU', 'PAYEMS', 'CPIAUCSL', 'M2SL']:
return series.resample('Q').last()
else:
# For rates, use mean
return series.resample('Q').mean()
return series
def fetch_quarterly_data(self, indicators: List[str] = None,
start_date: str = '1990-01-01',
end_date: str = None) -> pd.DataFrame:
"""
Fetch data standardized to quarterly frequency
Args:
indicators: List of indicators to fetch
start_date: Start date
end_date: End date
Returns:
Quarterly DataFrame
"""
return self.fetch_economic_data(indicators, start_date, end_date, frequency='Q')
def fetch_monthly_data(self, indicators: List[str] = None,
start_date: str = '1990-01-01',
end_date: str = None) -> pd.DataFrame:
"""
Fetch data standardized to monthly frequency
Args:
indicators: List of indicators to fetch
start_date: Start date
end_date: End date
Returns:
Monthly DataFrame
"""
return self.fetch_economic_data(indicators, start_date, end_date, frequency='M')
def get_series_info(self, series_id: str) -> Dict:
"""
Get detailed information about a series
Args:
series_id: FRED series ID
Returns:
Dictionary with series information
"""
try:
info = self.fred.get_series_info(series_id)
return {
'id': info.id,
'title': info.title,
'units': info.units,
'frequency': info.frequency,
'seasonal_adjustment': info.seasonal_adjustment,
'last_updated': info.last_updated,
'notes': info.notes
}
except Exception as e:
logger.error(f"Failed to get info for {series_id}: {e}")
return {'error': str(e)}
def get_all_series_info(self, indicators: List[str] = None) -> Dict:
"""
Get information for all indicators
Args:
indicators: List of indicators. If None, use all available
Returns:
Dictionary with series information
"""
if indicators is None:
indicators = list(self.ECONOMIC_INDICATORS.keys())
series_info = {}
for indicator in indicators:
if indicator in self.ECONOMIC_INDICATORS:
info = self.get_series_info(indicator)
series_info[indicator] = info
logger.info(f"Retrieved info for {indicator}")
return series_info
def validate_data_quality(self, data: pd.DataFrame) -> Dict:
"""
Validate data quality and completeness
Args:
data: Economic data DataFrame
Returns:
Dictionary with quality metrics
"""
quality_report = {
'total_series': len(data.columns),
'total_observations': len(data),
'date_range': {
'start': data.index.min().strftime('%Y-%m-%d'),
'end': data.index.max().strftime('%Y-%m-%d')
},
'missing_data': {},
'data_quality': {}
}
for column in data.columns:
series = data[column]
# Missing data analysis
missing_count = series.isna().sum()
missing_pct = (missing_count / len(series)) * 100
quality_report['missing_data'][column] = {
'missing_count': missing_count,
'missing_percentage': missing_pct,
'completeness': 100 - missing_pct
}
# Data quality metrics
if not series.isna().all():
non_null_series = series.dropna()
quality_report['data_quality'][column] = {
'mean': non_null_series.mean(),
'std': non_null_series.std(),
'min': non_null_series.min(),
'max': non_null_series.max(),
'skewness': non_null_series.skew(),
'kurtosis': non_null_series.kurtosis()
}
return quality_report
def generate_data_summary(self, data: pd.DataFrame) -> str:
"""
Generate comprehensive data summary report
Args:
data: Economic data DataFrame
Returns:
Formatted summary report
"""
quality_report = self.validate_data_quality(data)
summary = "ECONOMIC DATA SUMMARY\n"
summary += "=" * 50 + "\n\n"
summary += f"Dataset Overview:\n"
summary += f" Total Series: {quality_report['total_series']}\n"
summary += f" Total Observations: {quality_report['total_observations']}\n"
summary += f" Date Range: {quality_report['date_range']['start']} to {quality_report['date_range']['end']}\n\n"
summary += f"Series Information:\n"
for indicator in data.columns:
if indicator in self.ECONOMIC_INDICATORS:
summary += f" {indicator}: {self.ECONOMIC_INDICATORS[indicator]}\n"
summary += "\n"
summary += f"Data Quality:\n"
for series, metrics in quality_report['missing_data'].items():
summary += f" {series}: {metrics['completeness']:.1f}% complete "
summary += f"({metrics['missing_count']} missing observations)\n"
summary += "\n"
return summary