FREDML / src /analysis /statistical_modeling.py
Edwin Salguero
Enhanced FRED ML with improved Reports & Insights page, fixed alignment analysis, and comprehensive analytics improvements
2469150
"""
Statistical Modeling Module
Advanced statistical analysis for economic indicators including regression, correlation, and diagnostics
"""
import logging
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import pandas as pd
from scipy import stats
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.preprocessing import StandardScaler
from statsmodels.stats.diagnostic import het_breuschpagan
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.stats.stattools import durbin_watson
from statsmodels.tsa.stattools import adfuller, kpss
logger = logging.getLogger(__name__)
class StatisticalModeling:
"""
Advanced statistical modeling for economic indicators
including regression analysis, correlation analysis, and diagnostic testing
"""
def __init__(self, data: pd.DataFrame):
"""
Initialize statistical modeling with economic data
Args:
data: DataFrame with economic indicators
"""
self.data = data.copy()
self.models = {}
self.diagnostics = {}
self.correlations = {}
def prepare_regression_data(self, target: str, predictors: List[str] = None,
lag_periods: int = 4) -> Tuple[pd.DataFrame, pd.Series]:
"""
Prepare data for regression analysis with lagged variables
Args:
target: Target variable name
predictors: List of predictor variables. If None, use all other numeric columns
lag_periods: Number of lag periods to include
Returns:
Tuple of (features DataFrame, target Series)
"""
if target not in self.data.columns:
raise ValueError(f"Target variable {target} not found in data")
if predictors is None:
predictors = [col for col in self.data.select_dtypes(include=[np.number]).columns
if col != target]
# Calculate growth rates for all variables
growth_data = self.data[[target] + predictors].pct_change().dropna()
# Create lagged features
feature_data = {}
for predictor in predictors:
# Current value
feature_data[predictor] = growth_data[predictor]
# Lagged values
for lag in range(1, lag_periods + 1):
feature_data[f"{predictor}_lag{lag}"] = growth_data[predictor].shift(lag)
# Add target variable lags as features
for lag in range(1, lag_periods + 1):
feature_data[f"{target}_lag{lag}"] = growth_data[target].shift(lag)
# Create feature matrix
features_df = pd.DataFrame(feature_data)
features_df = features_df.dropna()
# Target variable
target_series = growth_data[target].iloc[features_df.index]
return features_df, target_series
def fit_regression_model(self, target: str, predictors: List[str] = None,
lag_periods: int = 4, include_interactions: bool = False) -> Dict:
"""
Fit linear regression model with diagnostic testing
Args:
target: Target variable name
predictors: List of predictor variables
lag_periods: Number of lag periods to include
include_interactions: Whether to include interaction terms
Returns:
Dictionary with model results and diagnostics
"""
try:
# Prepare data
features_df, target_series = self.prepare_regression_data(target, predictors, lag_periods)
if include_interactions:
# Add interaction terms
interaction_features = []
feature_cols = features_df.columns.tolist()
for i, col1 in enumerate(feature_cols):
for col2 in feature_cols[i+1:]:
interaction_name = f"{col1}_x_{col2}"
interaction_features.append(features_df[col1] * features_df[col2])
features_df[interaction_name] = interaction_features[-1]
# Scale features
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features_df)
features_scaled_df = pd.DataFrame(features_scaled,
index=features_df.index,
columns=features_df.columns)
# Fit model
model = LinearRegression()
model.fit(features_scaled_df, target_series)
# Predictions
predictions = model.predict(features_scaled_df)
residuals = target_series - predictions
# Model performance
r2 = r2_score(target_series, predictions)
mse = mean_squared_error(target_series, predictions)
rmse = np.sqrt(mse)
# Coefficient analysis
coefficients = pd.DataFrame({
'variable': features_df.columns,
'coefficient': model.coef_,
'abs_coefficient': np.abs(model.coef_)
}).sort_values('abs_coefficient', ascending=False)
# Diagnostic tests
diagnostics = self.perform_regression_diagnostics(features_scaled_df, target_series,
predictions, residuals)
return {
'model': model,
'scaler': scaler,
'features': features_df,
'target': target_series,
'predictions': predictions,
'residuals': residuals,
'coefficients': coefficients,
'performance': {
'r2': r2,
'mse': mse,
'rmse': rmse,
'mae': np.mean(np.abs(residuals))
},
'diagnostics': diagnostics
}
except Exception as e:
return {'error': f'Regression model fitting failed: {str(e)}'}
def perform_regression_diagnostics(self, features: pd.DataFrame, target: pd.Series,
predictions: np.ndarray, residuals: pd.Series) -> Dict:
"""
Perform comprehensive regression diagnostics
Args:
features: Feature matrix
target: Target variable
predictions: Model predictions
residuals: Model residuals
Returns:
Dictionary with diagnostic test results
"""
diagnostics = {}
# 1. Normality test (Shapiro-Wilk)
try:
shapiro_stat, shapiro_p = stats.shapiro(residuals)
diagnostics['normality'] = {
'test': 'Shapiro-Wilk',
'statistic': shapiro_stat,
'p_value': shapiro_p,
'interpretation': self._interpret_normality(shapiro_p)
}
except Exception as e:
diagnostics['normality'] = {'error': str(e)}
# 2. Homoscedasticity test (Breusch-Pagan)
try:
bp_stat, bp_p, bp_f, bp_f_p = het_breuschpagan(residuals, features)
diagnostics['homoscedasticity'] = {
'test': 'Breusch-Pagan',
'statistic': bp_stat,
'p_value': bp_p,
'interpretation': self._interpret_homoscedasticity(bp_p)
}
except Exception as e:
diagnostics['homoscedasticity'] = {'error': str(e)}
# 3. Autocorrelation test (Durbin-Watson)
try:
dw_stat = durbin_watson(residuals)
diagnostics['autocorrelation'] = {
'test': 'Durbin-Watson',
'statistic': dw_stat,
'interpretation': self._interpret_durbin_watson(dw_stat)
}
except Exception as e:
diagnostics['autocorrelation'] = {'error': str(e)}
# 4. Multicollinearity (VIF)
try:
vif_data = []
for i in range(features.shape[1]):
vif = variance_inflation_factor(features.values, i)
vif_data.append({
'variable': features.columns[i],
'vif': vif
})
diagnostics['multicollinearity'] = {
'test': 'Variance Inflation Factor',
'vif_values': vif_data,
'interpretation': self._interpret_multicollinearity(vif_data)
}
except Exception as e:
diagnostics['multicollinearity'] = {'error': str(e)}
return diagnostics
def _interpret_normality(self, p_value: float) -> str:
"""Interpret normality test results"""
if p_value < 0.05:
return "Residuals are not normally distributed (p < 0.05)"
else:
return "Residuals appear to be normally distributed (p >= 0.05)"
def _interpret_homoscedasticity(self, p_value: float) -> str:
"""Interpret homoscedasticity test results"""
if p_value < 0.05:
return "Heteroscedasticity detected (p < 0.05)"
else:
return "Homoscedasticity assumption appears valid (p >= 0.05)"
def _interpret_durbin_watson(self, dw_stat: float) -> str:
"""Interpret Durbin-Watson test results"""
if dw_stat < 1.5:
return "Positive autocorrelation detected"
elif dw_stat > 2.5:
return "Negative autocorrelation detected"
else:
return "No significant autocorrelation"
def _interpret_multicollinearity(self, vif_data: List[Dict]) -> str:
"""Interpret multicollinearity test results"""
high_vif = [item for item in vif_data if item['vif'] > 10]
if high_vif:
return f"Multicollinearity detected in {len(high_vif)} variables"
else:
return "No significant multicollinearity detected"
def analyze_correlations(self, indicators: List[str] = None,
method: str = 'pearson') -> Dict:
"""
Analyze correlations between economic indicators
Args:
indicators: List of indicators to analyze. If None, use all numeric columns
method: Correlation method ('pearson', 'spearman', 'kendall')
Returns:
Dictionary with correlation analysis results
"""
if indicators is None:
indicators = self.data.select_dtypes(include=[np.number]).columns.tolist()
# Calculate correlation matrix
corr_matrix = self.data[indicators].corr(method=method)
# Find strongest correlations
corr_pairs = []
for i in range(len(indicators)):
for j in range(i+1, len(indicators)):
corr_value = corr_matrix.iloc[i, j]
corr_pairs.append({
'variable1': indicators[i],
'variable2': indicators[j],
'correlation': corr_value,
'strength': self._interpret_correlation_strength(corr_value)
})
# Sort by absolute correlation value
corr_pairs.sort(key=lambda x: abs(x['correlation']), reverse=True)
return {
'correlation_matrix': corr_matrix,
'correlation_pairs': corr_pairs,
'method': method,
'strongest_correlations': corr_pairs[:5]
}
def _interpret_correlation_strength(self, corr_value: float) -> str:
"""Interpret correlation strength"""
abs_corr = abs(corr_value)
if abs_corr >= 0.8:
return "Very strong"
elif abs_corr >= 0.6:
return "Strong"
elif abs_corr >= 0.4:
return "Moderate"
elif abs_corr >= 0.2:
return "Weak"
else:
return "Very weak"
def perform_stationarity_tests(self, series: pd.Series) -> Dict:
"""
Perform stationarity tests on time series data
Args:
series: Time series data
Returns:
Dictionary with stationarity test results
"""
results = {}
# ADF test
try:
adf_stat, adf_p, adf_critical = adfuller(series.dropna())
results['adf'] = {
'statistic': adf_stat,
'p_value': adf_p,
'critical_values': adf_critical,
'is_stationary': adf_p < 0.05
}
except Exception as e:
results['adf'] = {'error': str(e)}
# KPSS test
try:
kpss_stat, kpss_p, kpss_critical = kpss(series.dropna())
results['kpss'] = {
'statistic': kpss_stat,
'p_value': kpss_p,
'critical_values': kpss_critical,
'is_stationary': kpss_p >= 0.05
}
except Exception as e:
results['kpss'] = {'error': str(e)}
return results
def _perform_pca_analysis(self, data: pd.DataFrame) -> Dict:
"""
Perform Principal Component Analysis
Args:
data: Standardized data matrix
Returns:
Dictionary with PCA results
"""
from sklearn.decomposition import PCA
pca = PCA()
pca.fit(data)
# Explained variance
explained_variance = pca.explained_variance_ratio_
cumulative_variance = np.cumsum(explained_variance)
return {
'components': pca.components_,
'explained_variance': explained_variance,
'cumulative_variance': cumulative_variance,
'n_components': len(explained_variance)
}
def perform_granger_causality(self, target: str, predictor: str,
max_lags: int = 4) -> Dict:
"""
Perform Granger causality test
Args:
target: Target variable name
predictor: Predictor variable name
max_lags: Maximum number of lags to test
Returns:
Dictionary with Granger causality test results
"""
try:
from statsmodels.tsa.stattools import grangercausalitytests
# Prepare data
data = self.data[[target, predictor]].dropna()
if len(data) < max_lags + 10:
return {'error': 'Insufficient data for Granger causality test'}
# Perform test
gc_result = grangercausalitytests(data, maxlag=max_lags, verbose=False)
# Extract results
results = {}
for lag in range(1, max_lags + 1):
if lag in gc_result:
f_stat = gc_result[lag][0]['ssr_ftest']
results[f'lag_{lag}'] = {
'f_statistic': f_stat[0],
'p_value': f_stat[1],
'significant': f_stat[1] < 0.05
}
return {
'target': target,
'predictor': predictor,
'max_lags': max_lags,
'results': results
}
except Exception as e:
return {'error': f'Granger causality test failed: {str(e)}'}
def generate_statistical_report(self, regression_results: Dict = None,
correlation_results: Dict = None,
causality_results: Dict = None) -> str:
"""
Generate comprehensive statistical analysis report
Args:
regression_results: Results from regression analysis
correlation_results: Results from correlation analysis
causality_results: Results from causality analysis
Returns:
Formatted report string
"""
report = []
report.append("=== STATISTICAL ANALYSIS REPORT ===\n")
# Regression results
if regression_results and 'error' not in regression_results:
report.append("REGRESSION ANALYSIS:")
perf = regression_results['performance']
report.append(f"- R² Score: {perf['r2']:.4f}")
report.append(f"- RMSE: {perf['rmse']:.4f}")
report.append(f"- MAE: {perf['mae']:.4f}")
# Top coefficients
top_coeffs = regression_results['coefficients'].head(5)
report.append("- Top 5 coefficients:")
for _, row in top_coeffs.iterrows():
report.append(f" {row['variable']}: {row['coefficient']:.4f}")
report.append("")
# Correlation results
if correlation_results:
report.append("CORRELATION ANALYSIS:")
strongest = correlation_results.get('strongest_correlations', [])
for pair in strongest[:3]:
report.append(f"- {pair['variable1']}{pair['variable2']}: "
f"{pair['correlation']:.3f} ({pair['strength']})")
report.append("")
# Causality results
if causality_results and 'error' not in causality_results:
report.append("GRANGER CAUSALITY ANALYSIS:")
results = causality_results.get('results', {})
significant_lags = [lag for lag, result in results.items()
if result.get('significant', False)]
if significant_lags:
report.append(f"- Significant causality detected at lags: {', '.join(significant_lags)}")
else:
report.append("- No significant causality detected")
report.append("")
return "\n".join(report)