Edwin Salguero
Enhanced FRED ML with improved Reports & Insights page, fixed alignment analysis, and comprehensive analytics improvements
2469150
#!/usr/bin/env python3 | |
""" | |
Unit tests for FRED ML Lambda Function | |
Tests core functionality without AWS dependencies | |
""" | |
import pytest | |
import sys | |
import json | |
import pandas as pd | |
import numpy as np | |
from unittest.mock import Mock, patch | |
from pathlib import Path | |
# Add src to path | |
project_root = Path(__file__).parent.parent.parent | |
sys.path.append(str(project_root / 'src')) | |
class TestLambdaFunction: | |
"""Test cases for Lambda function core functionality""" | |
def mock_event(self): | |
"""Mock Lambda event""" | |
return { | |
'indicators': ['GDP', 'UNRATE'], | |
'start_date': '2024-01-01', | |
'end_date': '2024-01-31', | |
'options': { | |
'visualizations': True, | |
'correlation': True, | |
'statistics': True | |
} | |
} | |
def mock_context(self): | |
"""Mock Lambda context""" | |
context = Mock() | |
context.function_name = 'fred-ml-processor' | |
context.function_version = '$LATEST' | |
context.invoked_function_arn = 'arn:aws:lambda:us-west-2:123456789012:function:fred-ml-processor' | |
context.memory_limit_in_mb = 512 | |
context.remaining_time_in_millis = 300000 | |
return context | |
def test_create_dataframe(self): | |
"""Test DataFrame creation from series data""" | |
from src.lambda_fn.lambda_function import create_dataframe | |
# Create mock series data | |
dates = pd.date_range('2024-01-01', '2024-01-05', freq='D') | |
series_data = { | |
'GDP': pd.Series([100.0, 101.0, 102.0, 103.0, 104.0], index=dates), | |
'UNRATE': pd.Series([3.5, 3.6, 3.7, 3.8, 3.9], index=dates) | |
} | |
df = create_dataframe(series_data) | |
assert not df.empty | |
assert 'GDP' in df.columns | |
assert 'UNRATE' in df.columns | |
assert len(df) == 5 | |
assert df.index.name == 'Date' | |
def test_generate_statistics(self): | |
"""Test statistics generation""" | |
from src.lambda_fn.lambda_function import generate_statistics | |
# Create test DataFrame | |
dates = pd.date_range('2024-01-01', '2024-01-05', freq='D') | |
df = pd.DataFrame({ | |
'GDP': [100.0, 101.0, 102.0, 103.0, 104.0], | |
'UNRATE': [3.5, 3.6, 3.7, 3.8, 3.9] | |
}, index=dates) | |
stats = generate_statistics(df) | |
assert 'GDP' in stats | |
assert 'UNRATE' in stats | |
assert 'mean' in stats['GDP'] | |
assert 'std' in stats['GDP'] | |
assert 'min' in stats['GDP'] | |
assert 'max' in stats['GDP'] | |
assert 'count' in stats['GDP'] | |
assert 'missing' in stats['GDP'] | |
# Verify calculations | |
assert stats['GDP']['mean'] == 102.0 | |
assert stats['GDP']['min'] == 100.0 | |
assert stats['GDP']['max'] == 104.0 | |
assert stats['GDP']['count'] == 5 | |
def test_create_correlation_matrix(self): | |
"""Test correlation matrix creation""" | |
from src.lambda_fn.lambda_function import create_correlation_matrix | |
# Create test DataFrame | |
dates = pd.date_range('2024-01-01', '2024-01-05', freq='D') | |
df = pd.DataFrame({ | |
'GDP': [100.0, 101.0, 102.0, 103.0, 104.0], | |
'UNRATE': [3.5, 3.6, 3.7, 3.8, 3.9] | |
}, index=dates) | |
corr_matrix = create_correlation_matrix(df) | |
assert 'GDP' in corr_matrix | |
assert 'UNRATE' in corr_matrix | |
assert 'GDP' in corr_matrix['GDP'] | |
assert 'UNRATE' in corr_matrix['UNRATE'] | |
# Verify correlation values | |
assert corr_matrix['GDP']['GDP'] == 1.0 | |
assert corr_matrix['UNRATE']['UNRATE'] == 1.0 | |
def test_get_fred_data_success(self, mock_requests): | |
"""Test successful FRED data fetching""" | |
from src.lambda_fn.lambda_function import get_fred_data | |
# Mock successful API response | |
mock_response = Mock() | |
mock_response.status_code = 200 | |
mock_response.json.return_value = { | |
'observations': [ | |
{'date': '2024-01-01', 'value': '100.0'}, | |
{'date': '2024-01-02', 'value': '101.0'}, | |
{'date': '2024-01-03', 'value': '102.0'} | |
] | |
} | |
mock_requests.return_value = mock_response | |
# Mock environment variable | |
with patch('src.lambda_fn.lambda_function.FRED_API_KEY', 'test-api-key'): | |
result = get_fred_data('GDP', '2024-01-01', '2024-01-03') | |
assert result is not None | |
assert len(result) == 3 | |
assert result.name == 'GDP' | |
assert result.iloc[0] == 100.0 | |
assert result.iloc[1] == 101.0 | |
assert result.iloc[2] == 102.0 | |
def test_get_fred_data_failure(self, mock_requests): | |
"""Test FRED data fetching failure""" | |
from src.lambda_fn.lambda_function import get_fred_data | |
# Mock failed API response | |
mock_response = Mock() | |
mock_response.status_code = 404 | |
mock_requests.return_value = mock_response | |
result = get_fred_data('INVALID', '2024-01-01', '2024-01-03') | |
assert result is None | |
def test_create_dataframe_empty_data(self): | |
"""Test DataFrame creation with empty data""" | |
from src.lambda_fn.lambda_function import create_dataframe | |
# Test with empty series data | |
df = create_dataframe({}) | |
assert df.empty | |
# Test with None values | |
df = create_dataframe({'GDP': None, 'UNRATE': None}) | |
assert df.empty | |
def test_generate_statistics_empty_data(self): | |
"""Test statistics generation with empty data""" | |
from src.lambda_fn.lambda_function import generate_statistics | |
# Test with empty DataFrame | |
df = pd.DataFrame() | |
stats = generate_statistics(df) | |
assert stats == {} | |
# Test with DataFrame containing only NaN values | |
df = pd.DataFrame({ | |
'GDP': [np.nan, np.nan, np.nan], | |
'UNRATE': [np.nan, np.nan, np.nan] | |
}) | |
stats = generate_statistics(df) | |
# When all values are NaN, the function should return empty stats | |
assert stats == {} | |
def test_create_correlation_matrix_empty_data(self): | |
"""Test correlation matrix creation with empty data""" | |
from src.lambda_fn.lambda_function import create_correlation_matrix | |
# Test with empty DataFrame | |
df = pd.DataFrame() | |
corr_matrix = create_correlation_matrix(df) | |
assert corr_matrix == {} | |
# Test with single column | |
df = pd.DataFrame({'GDP': [100.0, 101.0, 102.0]}) | |
corr_matrix = create_correlation_matrix(df) | |
assert 'GDP' in corr_matrix | |
assert corr_matrix['GDP']['GDP'] == 1.0 |