Merge remote changes and resolve conflicts - Fixed frequency error (ME -> M) - Updated analytics availability checks - Resolved merge conflicts keeping local improvements
Browse files
config/__pycache__/settings.cpython-39.pyc
DELETED
Binary file (2.38 kB)
|
|
frontend/demo_data.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
FRED ML - Demo Data Generator
|
3 |
+
Provides realistic economic data and senior data scientist insights
|
4 |
+
"""
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
import random
|
10 |
+
|
11 |
+
def generate_economic_data():
|
12 |
+
"""Generate realistic economic data for demonstration"""
|
13 |
+
|
14 |
+
# Generate date range (last 5 years)
|
15 |
+
end_date = datetime.now()
|
16 |
+
start_date = end_date - timedelta(days=365*5)
|
17 |
+
dates = pd.date_range(start=start_date, end=end_date, freq='M')
|
18 |
+
|
19 |
+
# Base values and trends for realistic economic data
|
20 |
+
base_values = {
|
21 |
+
'GDPC1': 20000, # Real GDP in billions
|
22 |
+
'INDPRO': 100, # Industrial Production Index
|
23 |
+
'RSAFS': 500, # Retail Sales in billions
|
24 |
+
'CPIAUCSL': 250, # Consumer Price Index
|
25 |
+
'FEDFUNDS': 2.5, # Federal Funds Rate
|
26 |
+
'DGS10': 3.0, # 10-Year Treasury Rate
|
27 |
+
'UNRATE': 4.0, # Unemployment Rate
|
28 |
+
'PAYEMS': 150000, # Total Nonfarm Payrolls (thousands)
|
29 |
+
'PCE': 18000, # Personal Consumption Expenditures
|
30 |
+
'M2SL': 21000, # M2 Money Stock
|
31 |
+
'TCU': 75, # Capacity Utilization
|
32 |
+
'DEXUSEU': 1.1 # US/Euro Exchange Rate
|
33 |
+
}
|
34 |
+
|
35 |
+
# Growth rates and volatility for realistic trends
|
36 |
+
growth_rates = {
|
37 |
+
'GDPC1': 0.02, # 2% annual growth
|
38 |
+
'INDPRO': 0.015, # 1.5% annual growth
|
39 |
+
'RSAFS': 0.03, # 3% annual growth
|
40 |
+
'CPIAUCSL': 0.025, # 2.5% annual inflation
|
41 |
+
'FEDFUNDS': 0.0, # Policy rate
|
42 |
+
'DGS10': 0.0, # Market rate
|
43 |
+
'UNRATE': 0.0, # Unemployment
|
44 |
+
'PAYEMS': 0.015, # Employment growth
|
45 |
+
'PCE': 0.025, # Consumption growth
|
46 |
+
'M2SL': 0.04, # Money supply growth
|
47 |
+
'TCU': 0.005, # Capacity utilization
|
48 |
+
'DEXUSEU': 0.0 # Exchange rate
|
49 |
+
}
|
50 |
+
|
51 |
+
# Generate realistic data
|
52 |
+
data = {'Date': dates}
|
53 |
+
|
54 |
+
for indicator, base_value in base_values.items():
|
55 |
+
# Create trend with realistic economic cycles
|
56 |
+
trend = np.linspace(0, len(dates) * growth_rates[indicator], len(dates))
|
57 |
+
|
58 |
+
# Add business cycle effects
|
59 |
+
cycle = 0.05 * np.sin(2 * np.pi * np.arange(len(dates)) / 48) # 4-year cycle
|
60 |
+
|
61 |
+
# Add random noise
|
62 |
+
noise = np.random.normal(0, 0.02, len(dates))
|
63 |
+
|
64 |
+
# Combine components
|
65 |
+
values = base_value * (1 + trend + cycle + noise)
|
66 |
+
|
67 |
+
# Ensure realistic bounds
|
68 |
+
if indicator in ['UNRATE', 'FEDFUNDS', 'DGS10']:
|
69 |
+
values = np.clip(values, 0, 20)
|
70 |
+
elif indicator in ['CPIAUCSL']:
|
71 |
+
values = np.clip(values, 200, 350)
|
72 |
+
elif indicator in ['TCU']:
|
73 |
+
values = np.clip(values, 60, 90)
|
74 |
+
|
75 |
+
data[indicator] = values
|
76 |
+
|
77 |
+
return pd.DataFrame(data)
|
78 |
+
|
79 |
+
def generate_insights():
|
80 |
+
"""Generate senior data scientist insights"""
|
81 |
+
|
82 |
+
insights = {
|
83 |
+
'GDPC1': {
|
84 |
+
'current_value': '$21,847.2B',
|
85 |
+
'growth_rate': '+2.1%',
|
86 |
+
'trend': 'Moderate growth',
|
87 |
+
'forecast': '+2.3% next quarter',
|
88 |
+
'key_insight': 'GDP growth remains resilient despite monetary tightening, supported by strong consumer spending and business investment.',
|
89 |
+
'risk_factors': ['Inflation persistence', 'Geopolitical tensions', 'Supply chain disruptions'],
|
90 |
+
'opportunities': ['Technology sector expansion', 'Infrastructure investment', 'Green energy transition']
|
91 |
+
},
|
92 |
+
'INDPRO': {
|
93 |
+
'current_value': '102.4',
|
94 |
+
'growth_rate': '+0.8%',
|
95 |
+
'trend': 'Recovery phase',
|
96 |
+
'forecast': '+0.6% next month',
|
97 |
+
'key_insight': 'Industrial production shows signs of recovery, with manufacturing leading the rebound. Capacity utilization improving.',
|
98 |
+
'risk_factors': ['Supply chain bottlenecks', 'Labor shortages', 'Energy price volatility'],
|
99 |
+
'opportunities': ['Advanced manufacturing', 'Automation adoption', 'Reshoring initiatives']
|
100 |
+
},
|
101 |
+
'RSAFS': {
|
102 |
+
'current_value': '$579.2B',
|
103 |
+
'growth_rate': '+3.2%',
|
104 |
+
'trend': 'Strong consumer spending',
|
105 |
+
'forecast': '+2.8% next month',
|
106 |
+
'key_insight': 'Retail sales demonstrate robust consumer confidence, with e-commerce continuing to gain market share.',
|
107 |
+
'risk_factors': ['Inflation impact on purchasing power', 'Interest rate sensitivity', 'Supply chain issues'],
|
108 |
+
'opportunities': ['Digital transformation', 'Omnichannel retail', 'Personalization']
|
109 |
+
},
|
110 |
+
'CPIAUCSL': {
|
111 |
+
'current_value': '312.3',
|
112 |
+
'growth_rate': '+3.2%',
|
113 |
+
'trend': 'Moderating inflation',
|
114 |
+
'forecast': '+2.9% next month',
|
115 |
+
'key_insight': 'Inflation continues to moderate from peak levels, with core CPI showing signs of stabilization.',
|
116 |
+
'risk_factors': ['Energy price volatility', 'Wage pressure', 'Supply chain costs'],
|
117 |
+
'opportunities': ['Productivity improvements', 'Technology adoption', 'Supply chain optimization']
|
118 |
+
},
|
119 |
+
'FEDFUNDS': {
|
120 |
+
'current_value': '5.25%',
|
121 |
+
'growth_rate': '0%',
|
122 |
+
'trend': 'Stable policy rate',
|
123 |
+
'forecast': '5.25% next meeting',
|
124 |
+
'key_insight': 'Federal Reserve maintains restrictive stance to combat inflation, with policy rate at 22-year high.',
|
125 |
+
'risk_factors': ['Inflation persistence', 'Economic slowdown', 'Financial stability'],
|
126 |
+
'opportunities': ['Policy normalization', 'Inflation targeting', 'Financial regulation']
|
127 |
+
},
|
128 |
+
'DGS10': {
|
129 |
+
'current_value': '4.12%',
|
130 |
+
'growth_rate': '-0.15%',
|
131 |
+
'trend': 'Declining yields',
|
132 |
+
'forecast': '4.05% next week',
|
133 |
+
'key_insight': '10-year Treasury yields declining on economic uncertainty and flight to quality. Yield curve inversion persists.',
|
134 |
+
'risk_factors': ['Economic recession', 'Inflation expectations', 'Geopolitical risks'],
|
135 |
+
'opportunities': ['Bond market opportunities', 'Portfolio diversification', 'Interest rate hedging']
|
136 |
+
},
|
137 |
+
'UNRATE': {
|
138 |
+
'current_value': '3.7%',
|
139 |
+
'growth_rate': '0%',
|
140 |
+
'trend': 'Stable employment',
|
141 |
+
'forecast': '3.6% next month',
|
142 |
+
'key_insight': 'Unemployment rate remains near historic lows, indicating tight labor market conditions.',
|
143 |
+
'risk_factors': ['Labor force participation', 'Skills mismatch', 'Economic slowdown'],
|
144 |
+
'opportunities': ['Workforce development', 'Technology training', 'Remote work adoption']
|
145 |
+
},
|
146 |
+
'PAYEMS': {
|
147 |
+
'current_value': '156,847K',
|
148 |
+
'growth_rate': '+1.2%',
|
149 |
+
'trend': 'Steady job growth',
|
150 |
+
'forecast': '+0.8% next month',
|
151 |
+
'key_insight': 'Nonfarm payrolls continue steady growth, with healthcare and technology sectors leading job creation.',
|
152 |
+
'risk_factors': ['Labor shortages', 'Wage pressure', 'Economic uncertainty'],
|
153 |
+
'opportunities': ['Skills development', 'Industry partnerships', 'Immigration policy']
|
154 |
+
},
|
155 |
+
'PCE': {
|
156 |
+
'current_value': '$19,847B',
|
157 |
+
'growth_rate': '+2.8%',
|
158 |
+
'trend': 'Strong consumption',
|
159 |
+
'forecast': '+2.5% next quarter',
|
160 |
+
'key_insight': 'Personal consumption expenditures show resilience, supported by strong labor market and wage growth.',
|
161 |
+
'risk_factors': ['Inflation impact', 'Interest rate sensitivity', 'Consumer confidence'],
|
162 |
+
'opportunities': ['Digital commerce', 'Experience economy', 'Sustainable consumption']
|
163 |
+
},
|
164 |
+
'M2SL': {
|
165 |
+
'current_value': '$20,847B',
|
166 |
+
'growth_rate': '+2.1%',
|
167 |
+
'trend': 'Moderate growth',
|
168 |
+
'forecast': '+1.8% next month',
|
169 |
+
'key_insight': 'Money supply growth moderating as Federal Reserve tightens monetary policy to combat inflation.',
|
170 |
+
'risk_factors': ['Inflation expectations', 'Financial stability', 'Economic growth'],
|
171 |
+
'opportunities': ['Digital payments', 'Financial innovation', 'Monetary policy']
|
172 |
+
},
|
173 |
+
'TCU': {
|
174 |
+
'current_value': '78.4%',
|
175 |
+
'growth_rate': '+0.3%',
|
176 |
+
'trend': 'Improving utilization',
|
177 |
+
'forecast': '78.7% next quarter',
|
178 |
+
'key_insight': 'Capacity utilization improving as supply chain issues resolve and demand remains strong.',
|
179 |
+
'risk_factors': ['Supply chain disruptions', 'Labor shortages', 'Energy constraints'],
|
180 |
+
'opportunities': ['Efficiency improvements', 'Technology adoption', 'Process optimization']
|
181 |
+
},
|
182 |
+
'DEXUSEU': {
|
183 |
+
'current_value': '1.087',
|
184 |
+
'growth_rate': '+0.2%',
|
185 |
+
'trend': 'Stable exchange rate',
|
186 |
+
'forecast': '1.085 next week',
|
187 |
+
'key_insight': 'US dollar remains strong against euro, supported by relative economic performance and interest rate differentials.',
|
188 |
+
'risk_factors': ['Economic divergence', 'Geopolitical tensions', 'Trade policies'],
|
189 |
+
'opportunities': ['Currency hedging', 'International trade', 'Investment diversification']
|
190 |
+
}
|
191 |
+
}
|
192 |
+
|
193 |
+
return insights
|
194 |
+
|
195 |
+
def generate_forecast_data():
|
196 |
+
"""Generate forecast data with confidence intervals"""
|
197 |
+
|
198 |
+
# Generate future dates (next 4 quarters)
|
199 |
+
last_date = datetime.now()
|
200 |
+
future_dates = pd.date_range(start=last_date + timedelta(days=90), periods=4, freq='Q')
|
201 |
+
|
202 |
+
forecasts = {}
|
203 |
+
|
204 |
+
# Realistic forecast scenarios
|
205 |
+
forecast_scenarios = {
|
206 |
+
'GDPC1': {'growth': 0.02, 'volatility': 0.01}, # 2% quarterly growth
|
207 |
+
'INDPRO': {'growth': 0.015, 'volatility': 0.008}, # 1.5% monthly growth
|
208 |
+
'RSAFS': {'growth': 0.025, 'volatility': 0.012}, # 2.5% monthly growth
|
209 |
+
'CPIAUCSL': {'growth': 0.006, 'volatility': 0.003}, # 0.6% monthly inflation
|
210 |
+
'FEDFUNDS': {'growth': 0.0, 'volatility': 0.25}, # Stable policy rate
|
211 |
+
'DGS10': {'growth': -0.001, 'volatility': 0.15}, # Slight decline
|
212 |
+
'UNRATE': {'growth': -0.001, 'volatility': 0.1}, # Slight decline
|
213 |
+
'PAYEMS': {'growth': 0.008, 'volatility': 0.005}, # 0.8% monthly growth
|
214 |
+
'PCE': {'growth': 0.02, 'volatility': 0.01}, # 2% quarterly growth
|
215 |
+
'M2SL': {'growth': 0.015, 'volatility': 0.008}, # 1.5% monthly growth
|
216 |
+
'TCU': {'growth': 0.003, 'volatility': 0.002}, # 0.3% quarterly growth
|
217 |
+
'DEXUSEU': {'growth': -0.001, 'volatility': 0.02} # Slight decline
|
218 |
+
}
|
219 |
+
|
220 |
+
for indicator, scenario in forecast_scenarios.items():
|
221 |
+
base_value = 100 # Normalized base value
|
222 |
+
|
223 |
+
# Generate forecast values
|
224 |
+
forecast_values = []
|
225 |
+
confidence_intervals = []
|
226 |
+
|
227 |
+
for i in range(4):
|
228 |
+
# Add trend and noise
|
229 |
+
value = base_value * (1 + scenario['growth'] * (i + 1) +
|
230 |
+
np.random.normal(0, scenario['volatility']))
|
231 |
+
|
232 |
+
# Generate confidence interval
|
233 |
+
lower = value * (1 - 0.05 - np.random.uniform(0, 0.03))
|
234 |
+
upper = value * (1 + 0.05 + np.random.uniform(0, 0.03))
|
235 |
+
|
236 |
+
forecast_values.append(value)
|
237 |
+
confidence_intervals.append({'lower': lower, 'upper': upper})
|
238 |
+
|
239 |
+
forecasts[indicator] = {
|
240 |
+
'forecast': forecast_values,
|
241 |
+
'confidence_intervals': pd.DataFrame(confidence_intervals),
|
242 |
+
'dates': future_dates
|
243 |
+
}
|
244 |
+
|
245 |
+
return forecasts
|
246 |
+
|
247 |
+
def generate_correlation_matrix():
|
248 |
+
"""Generate realistic correlation matrix"""
|
249 |
+
|
250 |
+
# Define realistic correlations between economic indicators
|
251 |
+
correlations = {
|
252 |
+
'GDPC1': {'INDPRO': 0.85, 'RSAFS': 0.78, 'CPIAUCSL': 0.45, 'FEDFUNDS': -0.32, 'DGS10': -0.28},
|
253 |
+
'INDPRO': {'RSAFS': 0.72, 'CPIAUCSL': 0.38, 'FEDFUNDS': -0.25, 'DGS10': -0.22},
|
254 |
+
'RSAFS': {'CPIAUCSL': 0.42, 'FEDFUNDS': -0.28, 'DGS10': -0.25},
|
255 |
+
'CPIAUCSL': {'FEDFUNDS': 0.65, 'DGS10': 0.58},
|
256 |
+
'FEDFUNDS': {'DGS10': 0.82}
|
257 |
+
}
|
258 |
+
|
259 |
+
# Create correlation matrix
|
260 |
+
indicators = ['GDPC1', 'INDPRO', 'RSAFS', 'CPIAUCSL', 'FEDFUNDS', 'DGS10', 'UNRATE', 'PAYEMS', 'PCE', 'M2SL', 'TCU', 'DEXUSEU']
|
261 |
+
corr_matrix = pd.DataFrame(index=indicators, columns=indicators)
|
262 |
+
|
263 |
+
# Fill diagonal with 1
|
264 |
+
for indicator in indicators:
|
265 |
+
corr_matrix.loc[indicator, indicator] = 1.0
|
266 |
+
|
267 |
+
# Fill with realistic correlations
|
268 |
+
for i, indicator1 in enumerate(indicators):
|
269 |
+
for j, indicator2 in enumerate(indicators):
|
270 |
+
if i != j:
|
271 |
+
if indicator1 in correlations and indicator2 in correlations[indicator1]:
|
272 |
+
corr_matrix.loc[indicator1, indicator2] = correlations[indicator1][indicator2]
|
273 |
+
elif indicator2 in correlations and indicator1 in correlations[indicator2]:
|
274 |
+
corr_matrix.loc[indicator1, indicator2] = correlations[indicator2][indicator1]
|
275 |
+
else:
|
276 |
+
# Generate random correlation between -0.3 and 0.3
|
277 |
+
corr_matrix.loc[indicator1, indicator2] = np.random.uniform(-0.3, 0.3)
|
278 |
+
|
279 |
+
return corr_matrix
|
280 |
+
|
281 |
+
def get_demo_data():
|
282 |
+
"""Get comprehensive demo data"""
|
283 |
+
return {
|
284 |
+
'economic_data': generate_economic_data(),
|
285 |
+
'insights': generate_insights(),
|
286 |
+
'forecasts': generate_forecast_data(),
|
287 |
+
'correlation_matrix': generate_correlation_matrix()
|
288 |
+
}
|