#!/usr/bin/env python3 """ Debug script to check the actual data structure and values """ import os import sys import pandas as pd import numpy as np from datetime import datetime # Add src to path sys.path.append(os.path.join(os.path.dirname(__file__), 'src')) from src.core.enhanced_fred_client import EnhancedFREDClient def debug_data_structure(): """Debug the data structure and values""" api_key = "acf8bbec7efe3b6dfa6ae083e7152314" print("=== DEBUGGING DATA STRUCTURE ===") try: # Initialize FRED client client = EnhancedFREDClient(api_key) # Fetch economic data end_date = datetime.now() start_date = end_date.replace(year=end_date.year - 1) print("1. Fetching economic data...") data = client.fetch_economic_data( start_date=start_date.strftime('%Y-%m-%d'), end_date=end_date.strftime('%Y-%m-%d') ) if data.empty: print("❌ No data fetched") return print(f"✅ Fetched data shape: {data.shape}") print(f" Date range: {data.index.min()} to {data.index.max()}") print(f" Columns: {list(data.columns)}") print() # Check each indicator for column in data.columns: series = data[column].dropna() print(f"2. Analyzing {column}:") print(f" Total observations: {len(data[column])}") print(f" Non-null observations: {len(series)}") print(f" Latest value: {series.iloc[-1] if len(series) > 0 else 'N/A'}") if len(series) >= 2: growth_rate = series.pct_change().iloc[-1] * 100 print(f" Latest growth rate: {growth_rate:.2f}%") else: print(f" Growth rate: Insufficient data") if len(series) >= 13: yoy_growth = series.pct_change(periods=12).iloc[-1] * 100 print(f" Year-over-year growth: {yoy_growth:.2f}%") else: print(f" Year-over-year growth: Insufficient data") print() # Test the specific calculations that are failing print("3. Testing specific calculations:") if 'GDPC1' in data.columns: gdp_series = data['GDPC1'].dropna() print(f" GDPC1 - Length: {len(gdp_series)}") if len(gdp_series) >= 2: gdp_growth = gdp_series.pct_change().iloc[-1] * 100 print(f" GDPC1 - Growth: {gdp_growth:.2f}%") print(f" GDPC1 - Is NaN: {pd.isna(gdp_growth)}") else: print(f" GDPC1 - Insufficient data for growth calculation") if 'INDPRO' in data.columns: indpro_series = data['INDPRO'].dropna() print(f" INDPRO - Length: {len(indpro_series)}") if len(indpro_series) >= 2: indpro_growth = indpro_series.pct_change().iloc[-1] * 100 print(f" INDPRO - Growth: {indpro_growth:.2f}%") print(f" INDPRO - Is NaN: {pd.isna(indpro_growth)}") else: print(f" INDPRO - Insufficient data for growth calculation") if 'CPIAUCSL' in data.columns: cpi_series = data['CPIAUCSL'].dropna() print(f" CPIAUCSL - Length: {len(cpi_series)}") if len(cpi_series) >= 13: cpi_growth = cpi_series.pct_change(periods=12).iloc[-1] * 100 print(f" CPIAUCSL - YoY Growth: {cpi_growth:.2f}%") print(f" CPIAUCSL - Is NaN: {pd.isna(cpi_growth)}") else: print(f" CPIAUCSL - Insufficient data for YoY calculation") if 'FEDFUNDS' in data.columns: fed_series = data['FEDFUNDS'].dropna() print(f" FEDFUNDS - Length: {len(fed_series)}") if len(fed_series) >= 1: fed_rate = fed_series.iloc[-1] print(f" FEDFUNDS - Latest rate: {fed_rate:.2f}%") print(f" FEDFUNDS - Is NaN: {pd.isna(fed_rate)}") else: print(f" FEDFUNDS - No data available") if 'UNRATE' in data.columns: unrate_series = data['UNRATE'].dropna() print(f" UNRATE - Length: {len(unrate_series)}") if len(unrate_series) >= 1: unrate = unrate_series.iloc[-1] print(f" UNRATE - Latest rate: {unrate:.2f}%") print(f" UNRATE - Is NaN: {pd.isna(unrate)}") else: print(f" UNRATE - No data available") print() print("=== DEBUG COMPLETE ===") except Exception as e: print(f"❌ Error during debugging: {e}") import traceback traceback.print_exc() if __name__ == "__main__": debug_data_structure()