PostNetworkAcademy commited on
Commit
3a3c34b
·
verified ·
1 Parent(s): be2a008

Upload LoRA fine-tuned CodeGPT model for robotics

Browse files
README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: gpt2
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:gpt2
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.16.0
adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "gpt2",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": true,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.2,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 8,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "c_proj",
29
+ "c_attn"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "trainable_token_indices": null,
33
+ "use_dora": false,
34
+ "use_qalora": false,
35
+ "use_rslora": false
36
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12ae7a8da46d64a3dd8dee1a6939126c52f2ae4f70858a06fa1a79b5ee7698a0
3
+ size 3253104
checkpoint-1200/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: gpt2
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:gpt2
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.16.0
checkpoint-1200/adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "gpt2",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": true,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.2,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 8,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "c_proj",
29
+ "c_attn"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "trainable_token_indices": null,
33
+ "use_dora": false,
34
+ "use_qalora": false,
35
+ "use_rslora": false
36
+ }
checkpoint-1200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9dafcf38baaed9d15caebc4fa53b5cd07d2eb80275cd087a9fcd866223e2771
3
+ size 3253104
checkpoint-1200/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d70df45b9c51761c59f5c91599142fb7e9945fc50007c0addf5a2553e68115b
3
+ size 6547275
checkpoint-1200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3e90a72d30ee4b0de7bf51a0b40ba25a5780a875409f8bd9a9f1ea919fd9555
3
+ size 14455
checkpoint-1200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11faac718876924b9a3a607c573586137b06ebbf2e7f0e60cc072caf8160a1b9
3
+ size 1465
checkpoint-1200/special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>",
5
+ "unk_token": "<|endoftext|>"
6
+ }
checkpoint-1200/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1200/tokenizer_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ }
12
+ },
13
+ "bos_token": "<|endoftext|>",
14
+ "clean_up_tokenization_spaces": false,
15
+ "eos_token": "<|endoftext|>",
16
+ "extra_special_tokens": {},
17
+ "model_max_length": 1024,
18
+ "pad_token": "<|endoftext|>",
19
+ "tokenizer_class": "GPT2Tokenizer",
20
+ "unk_token": "<|endoftext|>"
21
+ }
checkpoint-1200/trainer_state.json ADDED
@@ -0,0 +1,874 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 4.8,
6
+ "eval_steps": 500,
7
+ "global_step": 1200,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.04,
14
+ "grad_norm": 2.4589810371398926,
15
+ "learning_rate": 0.00029783999999999995,
16
+ "loss": 4.4167,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.08,
21
+ "grad_norm": 2.601901054382324,
22
+ "learning_rate": 0.00029544,
23
+ "loss": 2.9806,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.12,
28
+ "grad_norm": 2.307953357696533,
29
+ "learning_rate": 0.00029304,
30
+ "loss": 1.8472,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.16,
35
+ "grad_norm": 3.291213035583496,
36
+ "learning_rate": 0.00029064,
37
+ "loss": 1.2928,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.2,
42
+ "grad_norm": 2.0303196907043457,
43
+ "learning_rate": 0.00028824,
44
+ "loss": 1.0627,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.24,
49
+ "grad_norm": 3.6785004138946533,
50
+ "learning_rate": 0.00028584,
51
+ "loss": 0.9565,
52
+ "step": 60
53
+ },
54
+ {
55
+ "epoch": 0.28,
56
+ "grad_norm": 1.4240469932556152,
57
+ "learning_rate": 0.00028344,
58
+ "loss": 0.9233,
59
+ "step": 70
60
+ },
61
+ {
62
+ "epoch": 0.32,
63
+ "grad_norm": 2.694885492324829,
64
+ "learning_rate": 0.00028104,
65
+ "loss": 0.9178,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.36,
70
+ "grad_norm": 1.5424692630767822,
71
+ "learning_rate": 0.00027864,
72
+ "loss": 0.7373,
73
+ "step": 90
74
+ },
75
+ {
76
+ "epoch": 0.4,
77
+ "grad_norm": 2.2910563945770264,
78
+ "learning_rate": 0.00027623999999999997,
79
+ "loss": 0.5325,
80
+ "step": 100
81
+ },
82
+ {
83
+ "epoch": 0.44,
84
+ "grad_norm": 1.6730836629867554,
85
+ "learning_rate": 0.00027383999999999997,
86
+ "loss": 0.645,
87
+ "step": 110
88
+ },
89
+ {
90
+ "epoch": 0.48,
91
+ "grad_norm": 1.6389782428741455,
92
+ "learning_rate": 0.00027144,
93
+ "loss": 0.6097,
94
+ "step": 120
95
+ },
96
+ {
97
+ "epoch": 0.52,
98
+ "grad_norm": 1.6809048652648926,
99
+ "learning_rate": 0.00026904,
100
+ "loss": 0.6643,
101
+ "step": 130
102
+ },
103
+ {
104
+ "epoch": 0.56,
105
+ "grad_norm": 1.6298333406448364,
106
+ "learning_rate": 0.00026664,
107
+ "loss": 0.5427,
108
+ "step": 140
109
+ },
110
+ {
111
+ "epoch": 0.6,
112
+ "grad_norm": 1.7878191471099854,
113
+ "learning_rate": 0.00026424,
114
+ "loss": 0.4609,
115
+ "step": 150
116
+ },
117
+ {
118
+ "epoch": 0.64,
119
+ "grad_norm": 1.2301405668258667,
120
+ "learning_rate": 0.00026184,
121
+ "loss": 0.493,
122
+ "step": 160
123
+ },
124
+ {
125
+ "epoch": 0.68,
126
+ "grad_norm": 1.455725908279419,
127
+ "learning_rate": 0.00025944,
128
+ "loss": 0.4228,
129
+ "step": 170
130
+ },
131
+ {
132
+ "epoch": 0.72,
133
+ "grad_norm": 1.4393802881240845,
134
+ "learning_rate": 0.00025704,
135
+ "loss": 0.4187,
136
+ "step": 180
137
+ },
138
+ {
139
+ "epoch": 0.76,
140
+ "grad_norm": 1.6263259649276733,
141
+ "learning_rate": 0.00025464,
142
+ "loss": 0.3775,
143
+ "step": 190
144
+ },
145
+ {
146
+ "epoch": 0.8,
147
+ "grad_norm": 1.6711273193359375,
148
+ "learning_rate": 0.00025224,
149
+ "loss": 0.4605,
150
+ "step": 200
151
+ },
152
+ {
153
+ "epoch": 0.84,
154
+ "grad_norm": 2.1692495346069336,
155
+ "learning_rate": 0.00024984,
156
+ "loss": 0.3824,
157
+ "step": 210
158
+ },
159
+ {
160
+ "epoch": 0.88,
161
+ "grad_norm": 1.0546035766601562,
162
+ "learning_rate": 0.00024744,
163
+ "loss": 0.3738,
164
+ "step": 220
165
+ },
166
+ {
167
+ "epoch": 0.92,
168
+ "grad_norm": 2.023163318634033,
169
+ "learning_rate": 0.00024503999999999997,
170
+ "loss": 0.415,
171
+ "step": 230
172
+ },
173
+ {
174
+ "epoch": 0.96,
175
+ "grad_norm": 1.9141480922698975,
176
+ "learning_rate": 0.00024263999999999997,
177
+ "loss": 0.3633,
178
+ "step": 240
179
+ },
180
+ {
181
+ "epoch": 1.0,
182
+ "grad_norm": 1.3228883743286133,
183
+ "learning_rate": 0.00024023999999999996,
184
+ "loss": 0.3342,
185
+ "step": 250
186
+ },
187
+ {
188
+ "epoch": 1.04,
189
+ "grad_norm": 1.085424542427063,
190
+ "learning_rate": 0.00023783999999999996,
191
+ "loss": 0.327,
192
+ "step": 260
193
+ },
194
+ {
195
+ "epoch": 1.08,
196
+ "grad_norm": 0.8980942964553833,
197
+ "learning_rate": 0.00023543999999999998,
198
+ "loss": 0.3153,
199
+ "step": 270
200
+ },
201
+ {
202
+ "epoch": 1.12,
203
+ "grad_norm": 1.6237972974777222,
204
+ "learning_rate": 0.00023304,
205
+ "loss": 0.3216,
206
+ "step": 280
207
+ },
208
+ {
209
+ "epoch": 1.16,
210
+ "grad_norm": 1.7450311183929443,
211
+ "learning_rate": 0.00023064,
212
+ "loss": 0.2916,
213
+ "step": 290
214
+ },
215
+ {
216
+ "epoch": 1.2,
217
+ "grad_norm": 1.0936298370361328,
218
+ "learning_rate": 0.00022824,
219
+ "loss": 0.3402,
220
+ "step": 300
221
+ },
222
+ {
223
+ "epoch": 1.24,
224
+ "grad_norm": 1.0445630550384521,
225
+ "learning_rate": 0.00022584,
226
+ "loss": 0.2896,
227
+ "step": 310
228
+ },
229
+ {
230
+ "epoch": 1.28,
231
+ "grad_norm": 0.9999523758888245,
232
+ "learning_rate": 0.00022344,
233
+ "loss": 0.2906,
234
+ "step": 320
235
+ },
236
+ {
237
+ "epoch": 1.32,
238
+ "grad_norm": 0.7478229403495789,
239
+ "learning_rate": 0.00022103999999999998,
240
+ "loss": 0.2341,
241
+ "step": 330
242
+ },
243
+ {
244
+ "epoch": 1.3599999999999999,
245
+ "grad_norm": 0.8095645904541016,
246
+ "learning_rate": 0.00021863999999999998,
247
+ "loss": 0.2704,
248
+ "step": 340
249
+ },
250
+ {
251
+ "epoch": 1.4,
252
+ "grad_norm": 0.9236629009246826,
253
+ "learning_rate": 0.00021623999999999998,
254
+ "loss": 0.273,
255
+ "step": 350
256
+ },
257
+ {
258
+ "epoch": 1.44,
259
+ "grad_norm": 0.8723985552787781,
260
+ "learning_rate": 0.00021383999999999997,
261
+ "loss": 0.2561,
262
+ "step": 360
263
+ },
264
+ {
265
+ "epoch": 1.48,
266
+ "grad_norm": 1.017134666442871,
267
+ "learning_rate": 0.00021143999999999997,
268
+ "loss": 0.2452,
269
+ "step": 370
270
+ },
271
+ {
272
+ "epoch": 1.52,
273
+ "grad_norm": 0.9504234790802002,
274
+ "learning_rate": 0.00020903999999999996,
275
+ "loss": 0.2683,
276
+ "step": 380
277
+ },
278
+ {
279
+ "epoch": 1.56,
280
+ "grad_norm": 0.9547688364982605,
281
+ "learning_rate": 0.00020663999999999996,
282
+ "loss": 0.2303,
283
+ "step": 390
284
+ },
285
+ {
286
+ "epoch": 1.6,
287
+ "grad_norm": 0.8720774054527283,
288
+ "learning_rate": 0.00020423999999999998,
289
+ "loss": 0.2165,
290
+ "step": 400
291
+ },
292
+ {
293
+ "epoch": 1.6400000000000001,
294
+ "grad_norm": 0.829677402973175,
295
+ "learning_rate": 0.00020183999999999998,
296
+ "loss": 0.2634,
297
+ "step": 410
298
+ },
299
+ {
300
+ "epoch": 1.6800000000000002,
301
+ "grad_norm": 0.9081988334655762,
302
+ "learning_rate": 0.00019943999999999997,
303
+ "loss": 0.2684,
304
+ "step": 420
305
+ },
306
+ {
307
+ "epoch": 1.72,
308
+ "grad_norm": 1.1975181102752686,
309
+ "learning_rate": 0.00019704,
310
+ "loss": 0.2569,
311
+ "step": 430
312
+ },
313
+ {
314
+ "epoch": 1.76,
315
+ "grad_norm": 0.8156276345252991,
316
+ "learning_rate": 0.00019464,
317
+ "loss": 0.2517,
318
+ "step": 440
319
+ },
320
+ {
321
+ "epoch": 1.8,
322
+ "grad_norm": 1.7876633405685425,
323
+ "learning_rate": 0.00019224,
324
+ "loss": 0.2152,
325
+ "step": 450
326
+ },
327
+ {
328
+ "epoch": 1.8399999999999999,
329
+ "grad_norm": 1.1335052251815796,
330
+ "learning_rate": 0.00018983999999999998,
331
+ "loss": 0.2251,
332
+ "step": 460
333
+ },
334
+ {
335
+ "epoch": 1.88,
336
+ "grad_norm": 0.9554877877235413,
337
+ "learning_rate": 0.00018743999999999998,
338
+ "loss": 0.2704,
339
+ "step": 470
340
+ },
341
+ {
342
+ "epoch": 1.92,
343
+ "grad_norm": 0.8539214134216309,
344
+ "learning_rate": 0.00018503999999999998,
345
+ "loss": 0.2451,
346
+ "step": 480
347
+ },
348
+ {
349
+ "epoch": 1.96,
350
+ "grad_norm": 1.0320229530334473,
351
+ "learning_rate": 0.00018264,
352
+ "loss": 0.2366,
353
+ "step": 490
354
+ },
355
+ {
356
+ "epoch": 2.0,
357
+ "grad_norm": 1.2586992979049683,
358
+ "learning_rate": 0.00018024,
359
+ "loss": 0.2272,
360
+ "step": 500
361
+ },
362
+ {
363
+ "epoch": 2.04,
364
+ "grad_norm": 1.2709358930587769,
365
+ "learning_rate": 0.00017784,
366
+ "loss": 0.2441,
367
+ "step": 510
368
+ },
369
+ {
370
+ "epoch": 2.08,
371
+ "grad_norm": 1.0727570056915283,
372
+ "learning_rate": 0.00017544,
373
+ "loss": 0.2462,
374
+ "step": 520
375
+ },
376
+ {
377
+ "epoch": 2.12,
378
+ "grad_norm": 1.1682066917419434,
379
+ "learning_rate": 0.00017303999999999998,
380
+ "loss": 0.2517,
381
+ "step": 530
382
+ },
383
+ {
384
+ "epoch": 2.16,
385
+ "grad_norm": 0.7411966323852539,
386
+ "learning_rate": 0.00017063999999999998,
387
+ "loss": 0.2102,
388
+ "step": 540
389
+ },
390
+ {
391
+ "epoch": 2.2,
392
+ "grad_norm": 0.991942286491394,
393
+ "learning_rate": 0.00016823999999999997,
394
+ "loss": 0.2511,
395
+ "step": 550
396
+ },
397
+ {
398
+ "epoch": 2.24,
399
+ "grad_norm": 0.9176041483879089,
400
+ "learning_rate": 0.00016583999999999997,
401
+ "loss": 0.2126,
402
+ "step": 560
403
+ },
404
+ {
405
+ "epoch": 2.2800000000000002,
406
+ "grad_norm": 0.672929584980011,
407
+ "learning_rate": 0.00016343999999999997,
408
+ "loss": 0.2239,
409
+ "step": 570
410
+ },
411
+ {
412
+ "epoch": 2.32,
413
+ "grad_norm": 1.1830034255981445,
414
+ "learning_rate": 0.00016104,
415
+ "loss": 0.2076,
416
+ "step": 580
417
+ },
418
+ {
419
+ "epoch": 2.36,
420
+ "grad_norm": 0.8063239455223083,
421
+ "learning_rate": 0.00015864,
422
+ "loss": 0.2207,
423
+ "step": 590
424
+ },
425
+ {
426
+ "epoch": 2.4,
427
+ "grad_norm": 0.8704922795295715,
428
+ "learning_rate": 0.00015624,
429
+ "loss": 0.2303,
430
+ "step": 600
431
+ },
432
+ {
433
+ "epoch": 2.44,
434
+ "grad_norm": 1.1888242959976196,
435
+ "learning_rate": 0.00015384,
436
+ "loss": 0.2216,
437
+ "step": 610
438
+ },
439
+ {
440
+ "epoch": 2.48,
441
+ "grad_norm": 1.1730883121490479,
442
+ "learning_rate": 0.00015144,
443
+ "loss": 0.2131,
444
+ "step": 620
445
+ },
446
+ {
447
+ "epoch": 2.52,
448
+ "grad_norm": 1.1808068752288818,
449
+ "learning_rate": 0.00014904,
450
+ "loss": 0.225,
451
+ "step": 630
452
+ },
453
+ {
454
+ "epoch": 2.56,
455
+ "grad_norm": 0.7983546853065491,
456
+ "learning_rate": 0.00014664,
457
+ "loss": 0.2187,
458
+ "step": 640
459
+ },
460
+ {
461
+ "epoch": 2.6,
462
+ "grad_norm": 0.6871852278709412,
463
+ "learning_rate": 0.00014424,
464
+ "loss": 0.2035,
465
+ "step": 650
466
+ },
467
+ {
468
+ "epoch": 2.64,
469
+ "grad_norm": 1.1353809833526611,
470
+ "learning_rate": 0.00014183999999999998,
471
+ "loss": 0.2463,
472
+ "step": 660
473
+ },
474
+ {
475
+ "epoch": 2.68,
476
+ "grad_norm": 0.8931046724319458,
477
+ "learning_rate": 0.00013943999999999998,
478
+ "loss": 0.214,
479
+ "step": 670
480
+ },
481
+ {
482
+ "epoch": 2.7199999999999998,
483
+ "grad_norm": 0.815696656703949,
484
+ "learning_rate": 0.00013703999999999998,
485
+ "loss": 0.2207,
486
+ "step": 680
487
+ },
488
+ {
489
+ "epoch": 2.76,
490
+ "grad_norm": 0.7078017592430115,
491
+ "learning_rate": 0.00013463999999999997,
492
+ "loss": 0.2252,
493
+ "step": 690
494
+ },
495
+ {
496
+ "epoch": 2.8,
497
+ "grad_norm": 1.1375844478607178,
498
+ "learning_rate": 0.00013224,
499
+ "loss": 0.2328,
500
+ "step": 700
501
+ },
502
+ {
503
+ "epoch": 2.84,
504
+ "grad_norm": 0.8798996210098267,
505
+ "learning_rate": 0.00012984,
506
+ "loss": 0.2234,
507
+ "step": 710
508
+ },
509
+ {
510
+ "epoch": 2.88,
511
+ "grad_norm": 1.7571476697921753,
512
+ "learning_rate": 0.00012743999999999999,
513
+ "loss": 0.2102,
514
+ "step": 720
515
+ },
516
+ {
517
+ "epoch": 2.92,
518
+ "grad_norm": 0.9208499789237976,
519
+ "learning_rate": 0.00012503999999999998,
520
+ "loss": 0.2184,
521
+ "step": 730
522
+ },
523
+ {
524
+ "epoch": 2.96,
525
+ "grad_norm": 0.889255166053772,
526
+ "learning_rate": 0.00012263999999999998,
527
+ "loss": 0.2058,
528
+ "step": 740
529
+ },
530
+ {
531
+ "epoch": 3.0,
532
+ "grad_norm": 1.1631639003753662,
533
+ "learning_rate": 0.00012023999999999999,
534
+ "loss": 0.209,
535
+ "step": 750
536
+ },
537
+ {
538
+ "epoch": 3.04,
539
+ "grad_norm": 0.8798847794532776,
540
+ "learning_rate": 0.00011783999999999998,
541
+ "loss": 0.2166,
542
+ "step": 760
543
+ },
544
+ {
545
+ "epoch": 3.08,
546
+ "grad_norm": 0.8016518950462341,
547
+ "learning_rate": 0.00011543999999999998,
548
+ "loss": 0.2186,
549
+ "step": 770
550
+ },
551
+ {
552
+ "epoch": 3.12,
553
+ "grad_norm": 0.8691723942756653,
554
+ "learning_rate": 0.00011304,
555
+ "loss": 0.2125,
556
+ "step": 780
557
+ },
558
+ {
559
+ "epoch": 3.16,
560
+ "grad_norm": 1.184218168258667,
561
+ "learning_rate": 0.00011064,
562
+ "loss": 0.212,
563
+ "step": 790
564
+ },
565
+ {
566
+ "epoch": 3.2,
567
+ "grad_norm": 0.866477906703949,
568
+ "learning_rate": 0.00010824,
569
+ "loss": 0.2205,
570
+ "step": 800
571
+ },
572
+ {
573
+ "epoch": 3.24,
574
+ "grad_norm": 1.0902718305587769,
575
+ "learning_rate": 0.00010583999999999999,
576
+ "loss": 0.2059,
577
+ "step": 810
578
+ },
579
+ {
580
+ "epoch": 3.2800000000000002,
581
+ "grad_norm": 0.8657406568527222,
582
+ "learning_rate": 0.00010343999999999999,
583
+ "loss": 0.2029,
584
+ "step": 820
585
+ },
586
+ {
587
+ "epoch": 3.32,
588
+ "grad_norm": 0.8469038009643555,
589
+ "learning_rate": 0.00010103999999999998,
590
+ "loss": 0.1962,
591
+ "step": 830
592
+ },
593
+ {
594
+ "epoch": 3.36,
595
+ "grad_norm": 0.8991608023643494,
596
+ "learning_rate": 9.863999999999999e-05,
597
+ "loss": 0.2101,
598
+ "step": 840
599
+ },
600
+ {
601
+ "epoch": 3.4,
602
+ "grad_norm": 0.8037230372428894,
603
+ "learning_rate": 9.623999999999999e-05,
604
+ "loss": 0.2179,
605
+ "step": 850
606
+ },
607
+ {
608
+ "epoch": 3.44,
609
+ "grad_norm": 1.2116085290908813,
610
+ "learning_rate": 9.384e-05,
611
+ "loss": 0.2074,
612
+ "step": 860
613
+ },
614
+ {
615
+ "epoch": 3.48,
616
+ "grad_norm": 0.741066038608551,
617
+ "learning_rate": 9.143999999999999e-05,
618
+ "loss": 0.2037,
619
+ "step": 870
620
+ },
621
+ {
622
+ "epoch": 3.52,
623
+ "grad_norm": 0.6873167753219604,
624
+ "learning_rate": 8.904e-05,
625
+ "loss": 0.1982,
626
+ "step": 880
627
+ },
628
+ {
629
+ "epoch": 3.56,
630
+ "grad_norm": 0.9071510434150696,
631
+ "learning_rate": 8.664e-05,
632
+ "loss": 0.1845,
633
+ "step": 890
634
+ },
635
+ {
636
+ "epoch": 3.6,
637
+ "grad_norm": 1.968781590461731,
638
+ "learning_rate": 8.423999999999999e-05,
639
+ "loss": 0.2108,
640
+ "step": 900
641
+ },
642
+ {
643
+ "epoch": 3.64,
644
+ "grad_norm": 1.3130139112472534,
645
+ "learning_rate": 8.183999999999999e-05,
646
+ "loss": 0.2176,
647
+ "step": 910
648
+ },
649
+ {
650
+ "epoch": 3.68,
651
+ "grad_norm": 0.9878791570663452,
652
+ "learning_rate": 7.943999999999998e-05,
653
+ "loss": 0.197,
654
+ "step": 920
655
+ },
656
+ {
657
+ "epoch": 3.7199999999999998,
658
+ "grad_norm": 0.9072703123092651,
659
+ "learning_rate": 7.703999999999998e-05,
660
+ "loss": 0.2099,
661
+ "step": 930
662
+ },
663
+ {
664
+ "epoch": 3.76,
665
+ "grad_norm": 1.2311550378799438,
666
+ "learning_rate": 7.463999999999999e-05,
667
+ "loss": 0.2047,
668
+ "step": 940
669
+ },
670
+ {
671
+ "epoch": 3.8,
672
+ "grad_norm": 0.8542098999023438,
673
+ "learning_rate": 7.223999999999999e-05,
674
+ "loss": 0.2004,
675
+ "step": 950
676
+ },
677
+ {
678
+ "epoch": 3.84,
679
+ "grad_norm": 1.6090209484100342,
680
+ "learning_rate": 6.984e-05,
681
+ "loss": 0.2256,
682
+ "step": 960
683
+ },
684
+ {
685
+ "epoch": 3.88,
686
+ "grad_norm": 0.7759498953819275,
687
+ "learning_rate": 6.743999999999999e-05,
688
+ "loss": 0.206,
689
+ "step": 970
690
+ },
691
+ {
692
+ "epoch": 3.92,
693
+ "grad_norm": 0.7972224950790405,
694
+ "learning_rate": 6.503999999999999e-05,
695
+ "loss": 0.2178,
696
+ "step": 980
697
+ },
698
+ {
699
+ "epoch": 3.96,
700
+ "grad_norm": 0.9668699502944946,
701
+ "learning_rate": 6.264e-05,
702
+ "loss": 0.1974,
703
+ "step": 990
704
+ },
705
+ {
706
+ "epoch": 4.0,
707
+ "grad_norm": 0.7296855449676514,
708
+ "learning_rate": 6.024e-05,
709
+ "loss": 0.2144,
710
+ "step": 1000
711
+ },
712
+ {
713
+ "epoch": 4.04,
714
+ "grad_norm": 0.7582198977470398,
715
+ "learning_rate": 5.7839999999999995e-05,
716
+ "loss": 0.1918,
717
+ "step": 1010
718
+ },
719
+ {
720
+ "epoch": 4.08,
721
+ "grad_norm": 1.1084424257278442,
722
+ "learning_rate": 5.543999999999999e-05,
723
+ "loss": 0.2049,
724
+ "step": 1020
725
+ },
726
+ {
727
+ "epoch": 4.12,
728
+ "grad_norm": 0.9411384463310242,
729
+ "learning_rate": 5.304e-05,
730
+ "loss": 0.2063,
731
+ "step": 1030
732
+ },
733
+ {
734
+ "epoch": 4.16,
735
+ "grad_norm": 0.9459522366523743,
736
+ "learning_rate": 5.0639999999999996e-05,
737
+ "loss": 0.2157,
738
+ "step": 1040
739
+ },
740
+ {
741
+ "epoch": 4.2,
742
+ "grad_norm": 1.0647608041763306,
743
+ "learning_rate": 4.823999999999999e-05,
744
+ "loss": 0.2022,
745
+ "step": 1050
746
+ },
747
+ {
748
+ "epoch": 4.24,
749
+ "grad_norm": 0.660747766494751,
750
+ "learning_rate": 4.5839999999999995e-05,
751
+ "loss": 0.1817,
752
+ "step": 1060
753
+ },
754
+ {
755
+ "epoch": 4.28,
756
+ "grad_norm": 1.1960012912750244,
757
+ "learning_rate": 4.344e-05,
758
+ "loss": 0.2063,
759
+ "step": 1070
760
+ },
761
+ {
762
+ "epoch": 4.32,
763
+ "grad_norm": 0.7440004348754883,
764
+ "learning_rate": 4.104e-05,
765
+ "loss": 0.1964,
766
+ "step": 1080
767
+ },
768
+ {
769
+ "epoch": 4.36,
770
+ "grad_norm": 0.788646399974823,
771
+ "learning_rate": 3.8639999999999996e-05,
772
+ "loss": 0.2203,
773
+ "step": 1090
774
+ },
775
+ {
776
+ "epoch": 4.4,
777
+ "grad_norm": 0.9700394868850708,
778
+ "learning_rate": 3.624e-05,
779
+ "loss": 0.2147,
780
+ "step": 1100
781
+ },
782
+ {
783
+ "epoch": 4.44,
784
+ "grad_norm": 0.7296751737594604,
785
+ "learning_rate": 3.3839999999999994e-05,
786
+ "loss": 0.2054,
787
+ "step": 1110
788
+ },
789
+ {
790
+ "epoch": 4.48,
791
+ "grad_norm": 0.9951635599136353,
792
+ "learning_rate": 3.144e-05,
793
+ "loss": 0.2089,
794
+ "step": 1120
795
+ },
796
+ {
797
+ "epoch": 4.52,
798
+ "grad_norm": 1.1070553064346313,
799
+ "learning_rate": 2.9039999999999996e-05,
800
+ "loss": 0.2179,
801
+ "step": 1130
802
+ },
803
+ {
804
+ "epoch": 4.5600000000000005,
805
+ "grad_norm": 0.8714380860328674,
806
+ "learning_rate": 2.664e-05,
807
+ "loss": 0.191,
808
+ "step": 1140
809
+ },
810
+ {
811
+ "epoch": 4.6,
812
+ "grad_norm": 0.8615785241127014,
813
+ "learning_rate": 2.424e-05,
814
+ "loss": 0.2161,
815
+ "step": 1150
816
+ },
817
+ {
818
+ "epoch": 4.64,
819
+ "grad_norm": 0.8865022659301758,
820
+ "learning_rate": 2.1839999999999998e-05,
821
+ "loss": 0.2086,
822
+ "step": 1160
823
+ },
824
+ {
825
+ "epoch": 4.68,
826
+ "grad_norm": 0.9342474341392517,
827
+ "learning_rate": 1.9439999999999997e-05,
828
+ "loss": 0.1927,
829
+ "step": 1170
830
+ },
831
+ {
832
+ "epoch": 4.72,
833
+ "grad_norm": 0.87253737449646,
834
+ "learning_rate": 1.704e-05,
835
+ "loss": 0.2026,
836
+ "step": 1180
837
+ },
838
+ {
839
+ "epoch": 4.76,
840
+ "grad_norm": 1.2108485698699951,
841
+ "learning_rate": 1.464e-05,
842
+ "loss": 0.2249,
843
+ "step": 1190
844
+ },
845
+ {
846
+ "epoch": 4.8,
847
+ "grad_norm": 0.7751704454421997,
848
+ "learning_rate": 1.224e-05,
849
+ "loss": 0.1984,
850
+ "step": 1200
851
+ }
852
+ ],
853
+ "logging_steps": 10,
854
+ "max_steps": 1250,
855
+ "num_input_tokens_seen": 0,
856
+ "num_train_epochs": 5,
857
+ "save_steps": 100,
858
+ "stateful_callbacks": {
859
+ "TrainerControl": {
860
+ "args": {
861
+ "should_epoch_stop": false,
862
+ "should_evaluate": false,
863
+ "should_log": false,
864
+ "should_save": true,
865
+ "should_training_stop": false
866
+ },
867
+ "attributes": {}
868
+ }
869
+ },
870
+ "total_flos": 1266160553164800.0,
871
+ "train_batch_size": 4,
872
+ "trial_name": null,
873
+ "trial_params": null
874
+ }
checkpoint-1200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:538551f3213e943c547f4dc870b42dc0f564acab7617d0aa18a5190a23ab41aa
3
+ size 5713
checkpoint-1200/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1250/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: gpt2
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:gpt2
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.16.0
checkpoint-1250/adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "gpt2",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": true,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.2,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 8,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "c_proj",
29
+ "c_attn"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "trainable_token_indices": null,
33
+ "use_dora": false,
34
+ "use_qalora": false,
35
+ "use_rslora": false
36
+ }
checkpoint-1250/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12ae7a8da46d64a3dd8dee1a6939126c52f2ae4f70858a06fa1a79b5ee7698a0
3
+ size 3253104
checkpoint-1250/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1250/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3de19b2625242b543795a219afc0f09a4ce7f318545e31465d529ac4a4d6bd13
3
+ size 6547275
checkpoint-1250/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa9a78b350612fe92de18f95c9874e41deaf3c1cf5f9aa3a161f1542484eeb66
3
+ size 14455
checkpoint-1250/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71189d508b7541c849e3bed6247f10b8c5adcfaf18afd8b1fbb9670b35f42512
3
+ size 1465
checkpoint-1250/special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>",
5
+ "unk_token": "<|endoftext|>"
6
+ }
checkpoint-1250/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1250/tokenizer_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ }
12
+ },
13
+ "bos_token": "<|endoftext|>",
14
+ "clean_up_tokenization_spaces": false,
15
+ "eos_token": "<|endoftext|>",
16
+ "extra_special_tokens": {},
17
+ "model_max_length": 1024,
18
+ "pad_token": "<|endoftext|>",
19
+ "tokenizer_class": "GPT2Tokenizer",
20
+ "unk_token": "<|endoftext|>"
21
+ }
checkpoint-1250/trainer_state.json ADDED
@@ -0,0 +1,909 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1250,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.04,
14
+ "grad_norm": 2.4589810371398926,
15
+ "learning_rate": 0.00029783999999999995,
16
+ "loss": 4.4167,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.08,
21
+ "grad_norm": 2.601901054382324,
22
+ "learning_rate": 0.00029544,
23
+ "loss": 2.9806,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.12,
28
+ "grad_norm": 2.307953357696533,
29
+ "learning_rate": 0.00029304,
30
+ "loss": 1.8472,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.16,
35
+ "grad_norm": 3.291213035583496,
36
+ "learning_rate": 0.00029064,
37
+ "loss": 1.2928,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.2,
42
+ "grad_norm": 2.0303196907043457,
43
+ "learning_rate": 0.00028824,
44
+ "loss": 1.0627,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.24,
49
+ "grad_norm": 3.6785004138946533,
50
+ "learning_rate": 0.00028584,
51
+ "loss": 0.9565,
52
+ "step": 60
53
+ },
54
+ {
55
+ "epoch": 0.28,
56
+ "grad_norm": 1.4240469932556152,
57
+ "learning_rate": 0.00028344,
58
+ "loss": 0.9233,
59
+ "step": 70
60
+ },
61
+ {
62
+ "epoch": 0.32,
63
+ "grad_norm": 2.694885492324829,
64
+ "learning_rate": 0.00028104,
65
+ "loss": 0.9178,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.36,
70
+ "grad_norm": 1.5424692630767822,
71
+ "learning_rate": 0.00027864,
72
+ "loss": 0.7373,
73
+ "step": 90
74
+ },
75
+ {
76
+ "epoch": 0.4,
77
+ "grad_norm": 2.2910563945770264,
78
+ "learning_rate": 0.00027623999999999997,
79
+ "loss": 0.5325,
80
+ "step": 100
81
+ },
82
+ {
83
+ "epoch": 0.44,
84
+ "grad_norm": 1.6730836629867554,
85
+ "learning_rate": 0.00027383999999999997,
86
+ "loss": 0.645,
87
+ "step": 110
88
+ },
89
+ {
90
+ "epoch": 0.48,
91
+ "grad_norm": 1.6389782428741455,
92
+ "learning_rate": 0.00027144,
93
+ "loss": 0.6097,
94
+ "step": 120
95
+ },
96
+ {
97
+ "epoch": 0.52,
98
+ "grad_norm": 1.6809048652648926,
99
+ "learning_rate": 0.00026904,
100
+ "loss": 0.6643,
101
+ "step": 130
102
+ },
103
+ {
104
+ "epoch": 0.56,
105
+ "grad_norm": 1.6298333406448364,
106
+ "learning_rate": 0.00026664,
107
+ "loss": 0.5427,
108
+ "step": 140
109
+ },
110
+ {
111
+ "epoch": 0.6,
112
+ "grad_norm": 1.7878191471099854,
113
+ "learning_rate": 0.00026424,
114
+ "loss": 0.4609,
115
+ "step": 150
116
+ },
117
+ {
118
+ "epoch": 0.64,
119
+ "grad_norm": 1.2301405668258667,
120
+ "learning_rate": 0.00026184,
121
+ "loss": 0.493,
122
+ "step": 160
123
+ },
124
+ {
125
+ "epoch": 0.68,
126
+ "grad_norm": 1.455725908279419,
127
+ "learning_rate": 0.00025944,
128
+ "loss": 0.4228,
129
+ "step": 170
130
+ },
131
+ {
132
+ "epoch": 0.72,
133
+ "grad_norm": 1.4393802881240845,
134
+ "learning_rate": 0.00025704,
135
+ "loss": 0.4187,
136
+ "step": 180
137
+ },
138
+ {
139
+ "epoch": 0.76,
140
+ "grad_norm": 1.6263259649276733,
141
+ "learning_rate": 0.00025464,
142
+ "loss": 0.3775,
143
+ "step": 190
144
+ },
145
+ {
146
+ "epoch": 0.8,
147
+ "grad_norm": 1.6711273193359375,
148
+ "learning_rate": 0.00025224,
149
+ "loss": 0.4605,
150
+ "step": 200
151
+ },
152
+ {
153
+ "epoch": 0.84,
154
+ "grad_norm": 2.1692495346069336,
155
+ "learning_rate": 0.00024984,
156
+ "loss": 0.3824,
157
+ "step": 210
158
+ },
159
+ {
160
+ "epoch": 0.88,
161
+ "grad_norm": 1.0546035766601562,
162
+ "learning_rate": 0.00024744,
163
+ "loss": 0.3738,
164
+ "step": 220
165
+ },
166
+ {
167
+ "epoch": 0.92,
168
+ "grad_norm": 2.023163318634033,
169
+ "learning_rate": 0.00024503999999999997,
170
+ "loss": 0.415,
171
+ "step": 230
172
+ },
173
+ {
174
+ "epoch": 0.96,
175
+ "grad_norm": 1.9141480922698975,
176
+ "learning_rate": 0.00024263999999999997,
177
+ "loss": 0.3633,
178
+ "step": 240
179
+ },
180
+ {
181
+ "epoch": 1.0,
182
+ "grad_norm": 1.3228883743286133,
183
+ "learning_rate": 0.00024023999999999996,
184
+ "loss": 0.3342,
185
+ "step": 250
186
+ },
187
+ {
188
+ "epoch": 1.04,
189
+ "grad_norm": 1.085424542427063,
190
+ "learning_rate": 0.00023783999999999996,
191
+ "loss": 0.327,
192
+ "step": 260
193
+ },
194
+ {
195
+ "epoch": 1.08,
196
+ "grad_norm": 0.8980942964553833,
197
+ "learning_rate": 0.00023543999999999998,
198
+ "loss": 0.3153,
199
+ "step": 270
200
+ },
201
+ {
202
+ "epoch": 1.12,
203
+ "grad_norm": 1.6237972974777222,
204
+ "learning_rate": 0.00023304,
205
+ "loss": 0.3216,
206
+ "step": 280
207
+ },
208
+ {
209
+ "epoch": 1.16,
210
+ "grad_norm": 1.7450311183929443,
211
+ "learning_rate": 0.00023064,
212
+ "loss": 0.2916,
213
+ "step": 290
214
+ },
215
+ {
216
+ "epoch": 1.2,
217
+ "grad_norm": 1.0936298370361328,
218
+ "learning_rate": 0.00022824,
219
+ "loss": 0.3402,
220
+ "step": 300
221
+ },
222
+ {
223
+ "epoch": 1.24,
224
+ "grad_norm": 1.0445630550384521,
225
+ "learning_rate": 0.00022584,
226
+ "loss": 0.2896,
227
+ "step": 310
228
+ },
229
+ {
230
+ "epoch": 1.28,
231
+ "grad_norm": 0.9999523758888245,
232
+ "learning_rate": 0.00022344,
233
+ "loss": 0.2906,
234
+ "step": 320
235
+ },
236
+ {
237
+ "epoch": 1.32,
238
+ "grad_norm": 0.7478229403495789,
239
+ "learning_rate": 0.00022103999999999998,
240
+ "loss": 0.2341,
241
+ "step": 330
242
+ },
243
+ {
244
+ "epoch": 1.3599999999999999,
245
+ "grad_norm": 0.8095645904541016,
246
+ "learning_rate": 0.00021863999999999998,
247
+ "loss": 0.2704,
248
+ "step": 340
249
+ },
250
+ {
251
+ "epoch": 1.4,
252
+ "grad_norm": 0.9236629009246826,
253
+ "learning_rate": 0.00021623999999999998,
254
+ "loss": 0.273,
255
+ "step": 350
256
+ },
257
+ {
258
+ "epoch": 1.44,
259
+ "grad_norm": 0.8723985552787781,
260
+ "learning_rate": 0.00021383999999999997,
261
+ "loss": 0.2561,
262
+ "step": 360
263
+ },
264
+ {
265
+ "epoch": 1.48,
266
+ "grad_norm": 1.017134666442871,
267
+ "learning_rate": 0.00021143999999999997,
268
+ "loss": 0.2452,
269
+ "step": 370
270
+ },
271
+ {
272
+ "epoch": 1.52,
273
+ "grad_norm": 0.9504234790802002,
274
+ "learning_rate": 0.00020903999999999996,
275
+ "loss": 0.2683,
276
+ "step": 380
277
+ },
278
+ {
279
+ "epoch": 1.56,
280
+ "grad_norm": 0.9547688364982605,
281
+ "learning_rate": 0.00020663999999999996,
282
+ "loss": 0.2303,
283
+ "step": 390
284
+ },
285
+ {
286
+ "epoch": 1.6,
287
+ "grad_norm": 0.8720774054527283,
288
+ "learning_rate": 0.00020423999999999998,
289
+ "loss": 0.2165,
290
+ "step": 400
291
+ },
292
+ {
293
+ "epoch": 1.6400000000000001,
294
+ "grad_norm": 0.829677402973175,
295
+ "learning_rate": 0.00020183999999999998,
296
+ "loss": 0.2634,
297
+ "step": 410
298
+ },
299
+ {
300
+ "epoch": 1.6800000000000002,
301
+ "grad_norm": 0.9081988334655762,
302
+ "learning_rate": 0.00019943999999999997,
303
+ "loss": 0.2684,
304
+ "step": 420
305
+ },
306
+ {
307
+ "epoch": 1.72,
308
+ "grad_norm": 1.1975181102752686,
309
+ "learning_rate": 0.00019704,
310
+ "loss": 0.2569,
311
+ "step": 430
312
+ },
313
+ {
314
+ "epoch": 1.76,
315
+ "grad_norm": 0.8156276345252991,
316
+ "learning_rate": 0.00019464,
317
+ "loss": 0.2517,
318
+ "step": 440
319
+ },
320
+ {
321
+ "epoch": 1.8,
322
+ "grad_norm": 1.7876633405685425,
323
+ "learning_rate": 0.00019224,
324
+ "loss": 0.2152,
325
+ "step": 450
326
+ },
327
+ {
328
+ "epoch": 1.8399999999999999,
329
+ "grad_norm": 1.1335052251815796,
330
+ "learning_rate": 0.00018983999999999998,
331
+ "loss": 0.2251,
332
+ "step": 460
333
+ },
334
+ {
335
+ "epoch": 1.88,
336
+ "grad_norm": 0.9554877877235413,
337
+ "learning_rate": 0.00018743999999999998,
338
+ "loss": 0.2704,
339
+ "step": 470
340
+ },
341
+ {
342
+ "epoch": 1.92,
343
+ "grad_norm": 0.8539214134216309,
344
+ "learning_rate": 0.00018503999999999998,
345
+ "loss": 0.2451,
346
+ "step": 480
347
+ },
348
+ {
349
+ "epoch": 1.96,
350
+ "grad_norm": 1.0320229530334473,
351
+ "learning_rate": 0.00018264,
352
+ "loss": 0.2366,
353
+ "step": 490
354
+ },
355
+ {
356
+ "epoch": 2.0,
357
+ "grad_norm": 1.2586992979049683,
358
+ "learning_rate": 0.00018024,
359
+ "loss": 0.2272,
360
+ "step": 500
361
+ },
362
+ {
363
+ "epoch": 2.04,
364
+ "grad_norm": 1.2709358930587769,
365
+ "learning_rate": 0.00017784,
366
+ "loss": 0.2441,
367
+ "step": 510
368
+ },
369
+ {
370
+ "epoch": 2.08,
371
+ "grad_norm": 1.0727570056915283,
372
+ "learning_rate": 0.00017544,
373
+ "loss": 0.2462,
374
+ "step": 520
375
+ },
376
+ {
377
+ "epoch": 2.12,
378
+ "grad_norm": 1.1682066917419434,
379
+ "learning_rate": 0.00017303999999999998,
380
+ "loss": 0.2517,
381
+ "step": 530
382
+ },
383
+ {
384
+ "epoch": 2.16,
385
+ "grad_norm": 0.7411966323852539,
386
+ "learning_rate": 0.00017063999999999998,
387
+ "loss": 0.2102,
388
+ "step": 540
389
+ },
390
+ {
391
+ "epoch": 2.2,
392
+ "grad_norm": 0.991942286491394,
393
+ "learning_rate": 0.00016823999999999997,
394
+ "loss": 0.2511,
395
+ "step": 550
396
+ },
397
+ {
398
+ "epoch": 2.24,
399
+ "grad_norm": 0.9176041483879089,
400
+ "learning_rate": 0.00016583999999999997,
401
+ "loss": 0.2126,
402
+ "step": 560
403
+ },
404
+ {
405
+ "epoch": 2.2800000000000002,
406
+ "grad_norm": 0.672929584980011,
407
+ "learning_rate": 0.00016343999999999997,
408
+ "loss": 0.2239,
409
+ "step": 570
410
+ },
411
+ {
412
+ "epoch": 2.32,
413
+ "grad_norm": 1.1830034255981445,
414
+ "learning_rate": 0.00016104,
415
+ "loss": 0.2076,
416
+ "step": 580
417
+ },
418
+ {
419
+ "epoch": 2.36,
420
+ "grad_norm": 0.8063239455223083,
421
+ "learning_rate": 0.00015864,
422
+ "loss": 0.2207,
423
+ "step": 590
424
+ },
425
+ {
426
+ "epoch": 2.4,
427
+ "grad_norm": 0.8704922795295715,
428
+ "learning_rate": 0.00015624,
429
+ "loss": 0.2303,
430
+ "step": 600
431
+ },
432
+ {
433
+ "epoch": 2.44,
434
+ "grad_norm": 1.1888242959976196,
435
+ "learning_rate": 0.00015384,
436
+ "loss": 0.2216,
437
+ "step": 610
438
+ },
439
+ {
440
+ "epoch": 2.48,
441
+ "grad_norm": 1.1730883121490479,
442
+ "learning_rate": 0.00015144,
443
+ "loss": 0.2131,
444
+ "step": 620
445
+ },
446
+ {
447
+ "epoch": 2.52,
448
+ "grad_norm": 1.1808068752288818,
449
+ "learning_rate": 0.00014904,
450
+ "loss": 0.225,
451
+ "step": 630
452
+ },
453
+ {
454
+ "epoch": 2.56,
455
+ "grad_norm": 0.7983546853065491,
456
+ "learning_rate": 0.00014664,
457
+ "loss": 0.2187,
458
+ "step": 640
459
+ },
460
+ {
461
+ "epoch": 2.6,
462
+ "grad_norm": 0.6871852278709412,
463
+ "learning_rate": 0.00014424,
464
+ "loss": 0.2035,
465
+ "step": 650
466
+ },
467
+ {
468
+ "epoch": 2.64,
469
+ "grad_norm": 1.1353809833526611,
470
+ "learning_rate": 0.00014183999999999998,
471
+ "loss": 0.2463,
472
+ "step": 660
473
+ },
474
+ {
475
+ "epoch": 2.68,
476
+ "grad_norm": 0.8931046724319458,
477
+ "learning_rate": 0.00013943999999999998,
478
+ "loss": 0.214,
479
+ "step": 670
480
+ },
481
+ {
482
+ "epoch": 2.7199999999999998,
483
+ "grad_norm": 0.815696656703949,
484
+ "learning_rate": 0.00013703999999999998,
485
+ "loss": 0.2207,
486
+ "step": 680
487
+ },
488
+ {
489
+ "epoch": 2.76,
490
+ "grad_norm": 0.7078017592430115,
491
+ "learning_rate": 0.00013463999999999997,
492
+ "loss": 0.2252,
493
+ "step": 690
494
+ },
495
+ {
496
+ "epoch": 2.8,
497
+ "grad_norm": 1.1375844478607178,
498
+ "learning_rate": 0.00013224,
499
+ "loss": 0.2328,
500
+ "step": 700
501
+ },
502
+ {
503
+ "epoch": 2.84,
504
+ "grad_norm": 0.8798996210098267,
505
+ "learning_rate": 0.00012984,
506
+ "loss": 0.2234,
507
+ "step": 710
508
+ },
509
+ {
510
+ "epoch": 2.88,
511
+ "grad_norm": 1.7571476697921753,
512
+ "learning_rate": 0.00012743999999999999,
513
+ "loss": 0.2102,
514
+ "step": 720
515
+ },
516
+ {
517
+ "epoch": 2.92,
518
+ "grad_norm": 0.9208499789237976,
519
+ "learning_rate": 0.00012503999999999998,
520
+ "loss": 0.2184,
521
+ "step": 730
522
+ },
523
+ {
524
+ "epoch": 2.96,
525
+ "grad_norm": 0.889255166053772,
526
+ "learning_rate": 0.00012263999999999998,
527
+ "loss": 0.2058,
528
+ "step": 740
529
+ },
530
+ {
531
+ "epoch": 3.0,
532
+ "grad_norm": 1.1631639003753662,
533
+ "learning_rate": 0.00012023999999999999,
534
+ "loss": 0.209,
535
+ "step": 750
536
+ },
537
+ {
538
+ "epoch": 3.04,
539
+ "grad_norm": 0.8798847794532776,
540
+ "learning_rate": 0.00011783999999999998,
541
+ "loss": 0.2166,
542
+ "step": 760
543
+ },
544
+ {
545
+ "epoch": 3.08,
546
+ "grad_norm": 0.8016518950462341,
547
+ "learning_rate": 0.00011543999999999998,
548
+ "loss": 0.2186,
549
+ "step": 770
550
+ },
551
+ {
552
+ "epoch": 3.12,
553
+ "grad_norm": 0.8691723942756653,
554
+ "learning_rate": 0.00011304,
555
+ "loss": 0.2125,
556
+ "step": 780
557
+ },
558
+ {
559
+ "epoch": 3.16,
560
+ "grad_norm": 1.184218168258667,
561
+ "learning_rate": 0.00011064,
562
+ "loss": 0.212,
563
+ "step": 790
564
+ },
565
+ {
566
+ "epoch": 3.2,
567
+ "grad_norm": 0.866477906703949,
568
+ "learning_rate": 0.00010824,
569
+ "loss": 0.2205,
570
+ "step": 800
571
+ },
572
+ {
573
+ "epoch": 3.24,
574
+ "grad_norm": 1.0902718305587769,
575
+ "learning_rate": 0.00010583999999999999,
576
+ "loss": 0.2059,
577
+ "step": 810
578
+ },
579
+ {
580
+ "epoch": 3.2800000000000002,
581
+ "grad_norm": 0.8657406568527222,
582
+ "learning_rate": 0.00010343999999999999,
583
+ "loss": 0.2029,
584
+ "step": 820
585
+ },
586
+ {
587
+ "epoch": 3.32,
588
+ "grad_norm": 0.8469038009643555,
589
+ "learning_rate": 0.00010103999999999998,
590
+ "loss": 0.1962,
591
+ "step": 830
592
+ },
593
+ {
594
+ "epoch": 3.36,
595
+ "grad_norm": 0.8991608023643494,
596
+ "learning_rate": 9.863999999999999e-05,
597
+ "loss": 0.2101,
598
+ "step": 840
599
+ },
600
+ {
601
+ "epoch": 3.4,
602
+ "grad_norm": 0.8037230372428894,
603
+ "learning_rate": 9.623999999999999e-05,
604
+ "loss": 0.2179,
605
+ "step": 850
606
+ },
607
+ {
608
+ "epoch": 3.44,
609
+ "grad_norm": 1.2116085290908813,
610
+ "learning_rate": 9.384e-05,
611
+ "loss": 0.2074,
612
+ "step": 860
613
+ },
614
+ {
615
+ "epoch": 3.48,
616
+ "grad_norm": 0.741066038608551,
617
+ "learning_rate": 9.143999999999999e-05,
618
+ "loss": 0.2037,
619
+ "step": 870
620
+ },
621
+ {
622
+ "epoch": 3.52,
623
+ "grad_norm": 0.6873167753219604,
624
+ "learning_rate": 8.904e-05,
625
+ "loss": 0.1982,
626
+ "step": 880
627
+ },
628
+ {
629
+ "epoch": 3.56,
630
+ "grad_norm": 0.9071510434150696,
631
+ "learning_rate": 8.664e-05,
632
+ "loss": 0.1845,
633
+ "step": 890
634
+ },
635
+ {
636
+ "epoch": 3.6,
637
+ "grad_norm": 1.968781590461731,
638
+ "learning_rate": 8.423999999999999e-05,
639
+ "loss": 0.2108,
640
+ "step": 900
641
+ },
642
+ {
643
+ "epoch": 3.64,
644
+ "grad_norm": 1.3130139112472534,
645
+ "learning_rate": 8.183999999999999e-05,
646
+ "loss": 0.2176,
647
+ "step": 910
648
+ },
649
+ {
650
+ "epoch": 3.68,
651
+ "grad_norm": 0.9878791570663452,
652
+ "learning_rate": 7.943999999999998e-05,
653
+ "loss": 0.197,
654
+ "step": 920
655
+ },
656
+ {
657
+ "epoch": 3.7199999999999998,
658
+ "grad_norm": 0.9072703123092651,
659
+ "learning_rate": 7.703999999999998e-05,
660
+ "loss": 0.2099,
661
+ "step": 930
662
+ },
663
+ {
664
+ "epoch": 3.76,
665
+ "grad_norm": 1.2311550378799438,
666
+ "learning_rate": 7.463999999999999e-05,
667
+ "loss": 0.2047,
668
+ "step": 940
669
+ },
670
+ {
671
+ "epoch": 3.8,
672
+ "grad_norm": 0.8542098999023438,
673
+ "learning_rate": 7.223999999999999e-05,
674
+ "loss": 0.2004,
675
+ "step": 950
676
+ },
677
+ {
678
+ "epoch": 3.84,
679
+ "grad_norm": 1.6090209484100342,
680
+ "learning_rate": 6.984e-05,
681
+ "loss": 0.2256,
682
+ "step": 960
683
+ },
684
+ {
685
+ "epoch": 3.88,
686
+ "grad_norm": 0.7759498953819275,
687
+ "learning_rate": 6.743999999999999e-05,
688
+ "loss": 0.206,
689
+ "step": 970
690
+ },
691
+ {
692
+ "epoch": 3.92,
693
+ "grad_norm": 0.7972224950790405,
694
+ "learning_rate": 6.503999999999999e-05,
695
+ "loss": 0.2178,
696
+ "step": 980
697
+ },
698
+ {
699
+ "epoch": 3.96,
700
+ "grad_norm": 0.9668699502944946,
701
+ "learning_rate": 6.264e-05,
702
+ "loss": 0.1974,
703
+ "step": 990
704
+ },
705
+ {
706
+ "epoch": 4.0,
707
+ "grad_norm": 0.7296855449676514,
708
+ "learning_rate": 6.024e-05,
709
+ "loss": 0.2144,
710
+ "step": 1000
711
+ },
712
+ {
713
+ "epoch": 4.04,
714
+ "grad_norm": 0.7582198977470398,
715
+ "learning_rate": 5.7839999999999995e-05,
716
+ "loss": 0.1918,
717
+ "step": 1010
718
+ },
719
+ {
720
+ "epoch": 4.08,
721
+ "grad_norm": 1.1084424257278442,
722
+ "learning_rate": 5.543999999999999e-05,
723
+ "loss": 0.2049,
724
+ "step": 1020
725
+ },
726
+ {
727
+ "epoch": 4.12,
728
+ "grad_norm": 0.9411384463310242,
729
+ "learning_rate": 5.304e-05,
730
+ "loss": 0.2063,
731
+ "step": 1030
732
+ },
733
+ {
734
+ "epoch": 4.16,
735
+ "grad_norm": 0.9459522366523743,
736
+ "learning_rate": 5.0639999999999996e-05,
737
+ "loss": 0.2157,
738
+ "step": 1040
739
+ },
740
+ {
741
+ "epoch": 4.2,
742
+ "grad_norm": 1.0647608041763306,
743
+ "learning_rate": 4.823999999999999e-05,
744
+ "loss": 0.2022,
745
+ "step": 1050
746
+ },
747
+ {
748
+ "epoch": 4.24,
749
+ "grad_norm": 0.660747766494751,
750
+ "learning_rate": 4.5839999999999995e-05,
751
+ "loss": 0.1817,
752
+ "step": 1060
753
+ },
754
+ {
755
+ "epoch": 4.28,
756
+ "grad_norm": 1.1960012912750244,
757
+ "learning_rate": 4.344e-05,
758
+ "loss": 0.2063,
759
+ "step": 1070
760
+ },
761
+ {
762
+ "epoch": 4.32,
763
+ "grad_norm": 0.7440004348754883,
764
+ "learning_rate": 4.104e-05,
765
+ "loss": 0.1964,
766
+ "step": 1080
767
+ },
768
+ {
769
+ "epoch": 4.36,
770
+ "grad_norm": 0.788646399974823,
771
+ "learning_rate": 3.8639999999999996e-05,
772
+ "loss": 0.2203,
773
+ "step": 1090
774
+ },
775
+ {
776
+ "epoch": 4.4,
777
+ "grad_norm": 0.9700394868850708,
778
+ "learning_rate": 3.624e-05,
779
+ "loss": 0.2147,
780
+ "step": 1100
781
+ },
782
+ {
783
+ "epoch": 4.44,
784
+ "grad_norm": 0.7296751737594604,
785
+ "learning_rate": 3.3839999999999994e-05,
786
+ "loss": 0.2054,
787
+ "step": 1110
788
+ },
789
+ {
790
+ "epoch": 4.48,
791
+ "grad_norm": 0.9951635599136353,
792
+ "learning_rate": 3.144e-05,
793
+ "loss": 0.2089,
794
+ "step": 1120
795
+ },
796
+ {
797
+ "epoch": 4.52,
798
+ "grad_norm": 1.1070553064346313,
799
+ "learning_rate": 2.9039999999999996e-05,
800
+ "loss": 0.2179,
801
+ "step": 1130
802
+ },
803
+ {
804
+ "epoch": 4.5600000000000005,
805
+ "grad_norm": 0.8714380860328674,
806
+ "learning_rate": 2.664e-05,
807
+ "loss": 0.191,
808
+ "step": 1140
809
+ },
810
+ {
811
+ "epoch": 4.6,
812
+ "grad_norm": 0.8615785241127014,
813
+ "learning_rate": 2.424e-05,
814
+ "loss": 0.2161,
815
+ "step": 1150
816
+ },
817
+ {
818
+ "epoch": 4.64,
819
+ "grad_norm": 0.8865022659301758,
820
+ "learning_rate": 2.1839999999999998e-05,
821
+ "loss": 0.2086,
822
+ "step": 1160
823
+ },
824
+ {
825
+ "epoch": 4.68,
826
+ "grad_norm": 0.9342474341392517,
827
+ "learning_rate": 1.9439999999999997e-05,
828
+ "loss": 0.1927,
829
+ "step": 1170
830
+ },
831
+ {
832
+ "epoch": 4.72,
833
+ "grad_norm": 0.87253737449646,
834
+ "learning_rate": 1.704e-05,
835
+ "loss": 0.2026,
836
+ "step": 1180
837
+ },
838
+ {
839
+ "epoch": 4.76,
840
+ "grad_norm": 1.2108485698699951,
841
+ "learning_rate": 1.464e-05,
842
+ "loss": 0.2249,
843
+ "step": 1190
844
+ },
845
+ {
846
+ "epoch": 4.8,
847
+ "grad_norm": 0.7751704454421997,
848
+ "learning_rate": 1.224e-05,
849
+ "loss": 0.1984,
850
+ "step": 1200
851
+ },
852
+ {
853
+ "epoch": 4.84,
854
+ "grad_norm": 1.0439895391464233,
855
+ "learning_rate": 9.84e-06,
856
+ "loss": 0.1959,
857
+ "step": 1210
858
+ },
859
+ {
860
+ "epoch": 4.88,
861
+ "grad_norm": 1.0067217350006104,
862
+ "learning_rate": 7.439999999999999e-06,
863
+ "loss": 0.2912,
864
+ "step": 1220
865
+ },
866
+ {
867
+ "epoch": 4.92,
868
+ "grad_norm": 1.2053248882293701,
869
+ "learning_rate": 5.039999999999999e-06,
870
+ "loss": 0.2027,
871
+ "step": 1230
872
+ },
873
+ {
874
+ "epoch": 4.96,
875
+ "grad_norm": 0.8404466509819031,
876
+ "learning_rate": 2.64e-06,
877
+ "loss": 0.2035,
878
+ "step": 1240
879
+ },
880
+ {
881
+ "epoch": 5.0,
882
+ "grad_norm": 0.7507134079933167,
883
+ "learning_rate": 2.4e-07,
884
+ "loss": 0.2137,
885
+ "step": 1250
886
+ }
887
+ ],
888
+ "logging_steps": 10,
889
+ "max_steps": 1250,
890
+ "num_input_tokens_seen": 0,
891
+ "num_train_epochs": 5,
892
+ "save_steps": 100,
893
+ "stateful_callbacks": {
894
+ "TrainerControl": {
895
+ "args": {
896
+ "should_epoch_stop": false,
897
+ "should_evaluate": false,
898
+ "should_log": false,
899
+ "should_save": true,
900
+ "should_training_stop": true
901
+ },
902
+ "attributes": {}
903
+ }
904
+ },
905
+ "total_flos": 1318917242880000.0,
906
+ "train_batch_size": 4,
907
+ "trial_name": null,
908
+ "trial_params": null
909
+ }
checkpoint-1250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:538551f3213e943c547f4dc870b42dc0f564acab7617d0aa18a5190a23ab41aa
3
+ size 5713
checkpoint-1250/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>",
5
+ "unk_token": "<|endoftext|>"
6
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ }
12
+ },
13
+ "bos_token": "<|endoftext|>",
14
+ "clean_up_tokenization_spaces": false,
15
+ "eos_token": "<|endoftext|>",
16
+ "extra_special_tokens": {},
17
+ "model_max_length": 1024,
18
+ "pad_token": "<|endoftext|>",
19
+ "tokenizer_class": "GPT2Tokenizer",
20
+ "unk_token": "<|endoftext|>"
21
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff