Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -33,34 +33,4 @@ tokenizer = T5Tokenizer.from_pretrained("Priyanshu05/text-to-sql-t5")
|
|
33 |
question = "translate natural language to SQL: show all customers"
|
34 |
inputs = tokenizer(question, return_tensors="pt")
|
35 |
output = model.generate(**inputs)
|
36 |
-
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
37 |
-
|
38 |
-
|
39 |
-
## π Training Details
|
40 |
-
- Epochs: 3
|
41 |
-
|
42 |
-
- Batch Size: 8
|
43 |
-
|
44 |
-
- Learning Rate: 5e-5
|
45 |
-
|
46 |
-
- Optimizer: AdamW
|
47 |
-
|
48 |
-
- Loss Function: Cross Entropy
|
49 |
-
|
50 |
-
- Logged with: Weights & Biases
|
51 |
-
|
52 |
-
## π Files
|
53 |
-
pytorch_model.bin or model.safetensors: The fine-tuned model
|
54 |
-
|
55 |
-
tokenizer_config.json, spiece.model: Tokenizer files
|
56 |
-
|
57 |
-
config.json: Model architecture
|
58 |
-
|
59 |
-
## π Intended Use
|
60 |
-
Educational and experimental use
|
61 |
-
|
62 |
-
Translate natural language questions into basic SQL queries
|
63 |
-
|
64 |
-
|
65 |
-
## π License
|
66 |
-
Apache 2.0
|
|
|
33 |
question = "translate natural language to SQL: show all customers"
|
34 |
inputs = tokenizer(question, return_tensors="pt")
|
35 |
output = model.generate(**inputs)
|
36 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|