davidberenstein1957 commited on
Commit
72a2049
·
verified ·
1 Parent(s): 3f68994

Add files using upload-large-folder tool

Browse files
Files changed (4) hide show
  1. README.md +12 -6
  2. config.json +2 -1
  3. generation_config.json +1 -1
  4. smash_config.json +2 -0
README.md CHANGED
@@ -1,7 +1,8 @@
1
  ---
2
  library_name: transformers
3
  tags:
4
- - src-ai
 
5
  ---
6
 
7
  # Model Card for PrunaAI/test-save-tiny-random-llama3-smashed-pro
@@ -13,7 +14,7 @@ This model was created using the [pruna](https://github.com/PrunaAI/pruna) libra
13
  First things first, you need to install the pruna library:
14
 
15
  ```bash
16
- pip install src
17
  ```
18
 
19
  You can [use the transformers library to load the model](https://huggingface.co/PrunaAI/test-save-tiny-random-llama3-smashed-pro?library=transformers) but this might not include all optimizations by default.
@@ -21,14 +22,17 @@ You can [use the transformers library to load the model](https://huggingface.co/
21
  To ensure that all optimizations are applied, use the pruna library to load the model using the following code:
22
 
23
  ```python
24
- from src import PrunaProModel
25
 
26
- loaded_model = PrunaProModel.from_hub(
27
  "PrunaAI/test-save-tiny-random-llama3-smashed-pro"
28
  )
 
29
  ```
30
 
31
- After loading the model, you can use the inference methods of the original model. Take a look at the [documentation](https://pruna.readthedocs.io/en/latest/index.html) for more usage information.
 
 
32
 
33
  ## Smash Configuration
34
 
@@ -43,6 +47,7 @@ The compression configuration of the model is stored in the `smash_config.json`
43
  "distributer": null,
44
  "enhancer": null,
45
  "factorizer": null,
 
46
  "pruner": null,
47
  "quantizer": null,
48
  "recoverer": null,
@@ -58,6 +63,7 @@ The compression configuration of the model is stored in the `smash_config.json`
58
  "pruner": null,
59
  "quantizer": null,
60
  "distiller": null,
 
61
  "cacher": null,
62
  "recoverer": null,
63
  "distributer": null,
@@ -74,4 +80,4 @@ The compression configuration of the model is stored in the `smash_config.json`
74
  [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
75
  [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
76
  [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.com/invite/rskEr4BZJx)
77
- [![Reddit](https://img.shields.io/reddit/subreddit-subscribers/PrunaAI?style=social)](https://www.reddit.com/r/PrunaAI/)
 
1
  ---
2
  library_name: transformers
3
  tags:
4
+ - pruna_pro-ai
5
+ - safetensors
6
  ---
7
 
8
  # Model Card for PrunaAI/test-save-tiny-random-llama3-smashed-pro
 
14
  First things first, you need to install the pruna library:
15
 
16
  ```bash
17
+ pip install pruna_pro
18
  ```
19
 
20
  You can [use the transformers library to load the model](https://huggingface.co/PrunaAI/test-save-tiny-random-llama3-smashed-pro?library=transformers) but this might not include all optimizations by default.
 
22
  To ensure that all optimizations are applied, use the pruna library to load the model using the following code:
23
 
24
  ```python
25
+ from pruna_pro import PrunaProModel
26
 
27
+ loaded_model = PrunaProModel.from_pretrained(
28
  "PrunaAI/test-save-tiny-random-llama3-smashed-pro"
29
  )
30
+ # we can then run inference using the methods supported by the base model
31
  ```
32
 
33
+
34
+ For inference, you can use the inference methods of the original model like shown in [the original model card](https://huggingface.co/HuggingFaceM4/tiny-random-Llama3ForCausalLM?library=transformers).
35
+ Alternatively, you can visit [the Pruna documentation](https://docs.pruna.ai/en/stable/) for more information.
36
 
37
  ## Smash Configuration
38
 
 
47
  "distributer": null,
48
  "enhancer": null,
49
  "factorizer": null,
50
+ "kernel": null,
51
  "pruner": null,
52
  "quantizer": null,
53
  "recoverer": null,
 
63
  "pruner": null,
64
  "quantizer": null,
65
  "distiller": null,
66
+ "kernel": null,
67
  "cacher": null,
68
  "recoverer": null,
69
  "distributer": null,
 
80
  [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
81
  [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
82
  [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.com/invite/rskEr4BZJx)
83
+ [![Reddit](https://img.shields.io/reddit/subreddit-subscribers/PrunaAI?style=social)](https://www.reddit.com/r/PrunaAI/)
config.json CHANGED
@@ -1,4 +1,5 @@
1
  {
 
2
  "architectures": [
3
  "LlamaForCausalLM"
4
  ],
@@ -23,7 +24,7 @@
23
  "rope_theta": 10000.0,
24
  "tie_word_embeddings": false,
25
  "torch_dtype": "float32",
26
- "transformers_version": "4.53.3",
27
  "use_cache": true,
28
  "vocab_size": 128256
29
  }
 
1
  {
2
+ "_name_or_path": "HuggingFaceM4/tiny-random-Llama3ForCausalLM",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
 
24
  "rope_theta": 10000.0,
25
  "tie_word_embeddings": false,
26
  "torch_dtype": "float32",
27
+ "transformers_version": "4.48.0",
28
  "use_cache": true,
29
  "vocab_size": 128256
30
  }
generation_config.json CHANGED
@@ -2,5 +2,5 @@
2
  "_from_model_config": true,
3
  "bos_token_id": 1,
4
  "eos_token_id": 2,
5
- "transformers_version": "4.53.3"
6
  }
 
2
  "_from_model_config": true,
3
  "bos_token_id": 1,
4
  "eos_token_id": 2,
5
+ "transformers_version": "4.48.0"
6
  }
smash_config.json CHANGED
@@ -6,6 +6,7 @@
6
  "distributer": null,
7
  "enhancer": null,
8
  "factorizer": null,
 
9
  "pruner": null,
10
  "quantizer": null,
11
  "recoverer": null,
@@ -21,6 +22,7 @@
21
  "pruner": null,
22
  "quantizer": null,
23
  "distiller": null,
 
24
  "cacher": null,
25
  "recoverer": null,
26
  "distributer": null,
 
6
  "distributer": null,
7
  "enhancer": null,
8
  "factorizer": null,
9
+ "kernel": null,
10
  "pruner": null,
11
  "quantizer": null,
12
  "recoverer": null,
 
22
  "pruner": null,
23
  "quantizer": null,
24
  "distiller": null,
25
+ "kernel": null,
26
  "cacher": null,
27
  "recoverer": null,
28
  "distributer": null,