Add files using upload-large-folder tool
Browse files- README.md +12 -6
- config.json +2 -1
- generation_config.json +1 -1
- smash_config.json +2 -0
README.md
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
tags:
|
4 |
-
-
|
|
|
5 |
---
|
6 |
|
7 |
# Model Card for PrunaAI/test-save-tiny-random-llama3-smashed-pro
|
@@ -13,7 +14,7 @@ This model was created using the [pruna](https://github.com/PrunaAI/pruna) libra
|
|
13 |
First things first, you need to install the pruna library:
|
14 |
|
15 |
```bash
|
16 |
-
pip install
|
17 |
```
|
18 |
|
19 |
You can [use the transformers library to load the model](https://huggingface.co/PrunaAI/test-save-tiny-random-llama3-smashed-pro?library=transformers) but this might not include all optimizations by default.
|
@@ -21,14 +22,17 @@ You can [use the transformers library to load the model](https://huggingface.co/
|
|
21 |
To ensure that all optimizations are applied, use the pruna library to load the model using the following code:
|
22 |
|
23 |
```python
|
24 |
-
from
|
25 |
|
26 |
-
loaded_model = PrunaProModel.
|
27 |
"PrunaAI/test-save-tiny-random-llama3-smashed-pro"
|
28 |
)
|
|
|
29 |
```
|
30 |
|
31 |
-
|
|
|
|
|
32 |
|
33 |
## Smash Configuration
|
34 |
|
@@ -43,6 +47,7 @@ The compression configuration of the model is stored in the `smash_config.json`
|
|
43 |
"distributer": null,
|
44 |
"enhancer": null,
|
45 |
"factorizer": null,
|
|
|
46 |
"pruner": null,
|
47 |
"quantizer": null,
|
48 |
"recoverer": null,
|
@@ -58,6 +63,7 @@ The compression configuration of the model is stored in the `smash_config.json`
|
|
58 |
"pruner": null,
|
59 |
"quantizer": null,
|
60 |
"distiller": null,
|
|
|
61 |
"cacher": null,
|
62 |
"recoverer": null,
|
63 |
"distributer": null,
|
@@ -74,4 +80,4 @@ The compression configuration of the model is stored in the `smash_config.json`
|
|
74 |
[](https://github.com/PrunaAI)
|
75 |
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
76 |
[](https://discord.com/invite/rskEr4BZJx)
|
77 |
-
[](https://www.reddit.com/r/PrunaAI/)
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
tags:
|
4 |
+
- pruna_pro-ai
|
5 |
+
- safetensors
|
6 |
---
|
7 |
|
8 |
# Model Card for PrunaAI/test-save-tiny-random-llama3-smashed-pro
|
|
|
14 |
First things first, you need to install the pruna library:
|
15 |
|
16 |
```bash
|
17 |
+
pip install pruna_pro
|
18 |
```
|
19 |
|
20 |
You can [use the transformers library to load the model](https://huggingface.co/PrunaAI/test-save-tiny-random-llama3-smashed-pro?library=transformers) but this might not include all optimizations by default.
|
|
|
22 |
To ensure that all optimizations are applied, use the pruna library to load the model using the following code:
|
23 |
|
24 |
```python
|
25 |
+
from pruna_pro import PrunaProModel
|
26 |
|
27 |
+
loaded_model = PrunaProModel.from_pretrained(
|
28 |
"PrunaAI/test-save-tiny-random-llama3-smashed-pro"
|
29 |
)
|
30 |
+
# we can then run inference using the methods supported by the base model
|
31 |
```
|
32 |
|
33 |
+
|
34 |
+
For inference, you can use the inference methods of the original model like shown in [the original model card](https://huggingface.co/HuggingFaceM4/tiny-random-Llama3ForCausalLM?library=transformers).
|
35 |
+
Alternatively, you can visit [the Pruna documentation](https://docs.pruna.ai/en/stable/) for more information.
|
36 |
|
37 |
## Smash Configuration
|
38 |
|
|
|
47 |
"distributer": null,
|
48 |
"enhancer": null,
|
49 |
"factorizer": null,
|
50 |
+
"kernel": null,
|
51 |
"pruner": null,
|
52 |
"quantizer": null,
|
53 |
"recoverer": null,
|
|
|
63 |
"pruner": null,
|
64 |
"quantizer": null,
|
65 |
"distiller": null,
|
66 |
+
"kernel": null,
|
67 |
"cacher": null,
|
68 |
"recoverer": null,
|
69 |
"distributer": null,
|
|
|
80 |
[](https://github.com/PrunaAI)
|
81 |
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
82 |
[](https://discord.com/invite/rskEr4BZJx)
|
83 |
+
[](https://www.reddit.com/r/PrunaAI/)
|
config.json
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"LlamaForCausalLM"
|
4 |
],
|
@@ -23,7 +24,7 @@
|
|
23 |
"rope_theta": 10000.0,
|
24 |
"tie_word_embeddings": false,
|
25 |
"torch_dtype": "float32",
|
26 |
-
"transformers_version": "4.
|
27 |
"use_cache": true,
|
28 |
"vocab_size": 128256
|
29 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "HuggingFaceM4/tiny-random-Llama3ForCausalLM",
|
3 |
"architectures": [
|
4 |
"LlamaForCausalLM"
|
5 |
],
|
|
|
24 |
"rope_theta": 10000.0,
|
25 |
"tie_word_embeddings": false,
|
26 |
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.48.0",
|
28 |
"use_cache": true,
|
29 |
"vocab_size": 128256
|
30 |
}
|
generation_config.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
-
"transformers_version": "4.
|
6 |
}
|
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.48.0"
|
6 |
}
|
smash_config.json
CHANGED
@@ -6,6 +6,7 @@
|
|
6 |
"distributer": null,
|
7 |
"enhancer": null,
|
8 |
"factorizer": null,
|
|
|
9 |
"pruner": null,
|
10 |
"quantizer": null,
|
11 |
"recoverer": null,
|
@@ -21,6 +22,7 @@
|
|
21 |
"pruner": null,
|
22 |
"quantizer": null,
|
23 |
"distiller": null,
|
|
|
24 |
"cacher": null,
|
25 |
"recoverer": null,
|
26 |
"distributer": null,
|
|
|
6 |
"distributer": null,
|
7 |
"enhancer": null,
|
8 |
"factorizer": null,
|
9 |
+
"kernel": null,
|
10 |
"pruner": null,
|
11 |
"quantizer": null,
|
12 |
"recoverer": null,
|
|
|
22 |
"pruner": null,
|
23 |
"quantizer": null,
|
24 |
"distiller": null,
|
25 |
+
"kernel": null,
|
26 |
"cacher": null,
|
27 |
"recoverer": null,
|
28 |
"distributer": null,
|