File size: 2,386 Bytes
cf11108 ac1d2f6 cf11108 ac1d2f6 cf11108 52cf4a8 eb7363e cf11108 1082575 cf11108 e75ff26 cf11108 c2402a1 cf11108 c2402a1 cf11108 c2402a1 cf11108 ed09f0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
language: en
license: mit
pipeline_tag: document-question-answering
tags:
- layoutlm
- document-question-answering
- pdf
widget:
- text: "What is the invoice number?"
src: "https://huggingface.co/datasets/Quantamhash/Assets/resolve/main/images/invoice.png"
- text: "What is the purchase amount?"
src: "https://huggingface.co/datasets/Quantamhash/Assets/resolve/main/images/contract.jpeg"
---
# LayoutLM for Visual Question Answering
<div align="center">
<img src="https://huggingface.co/datasets/Quantamhash/Assets/resolve/main/images/dark_logo.png"
alt="Title card"
style="width: 500px;
height: auto;
object-position: center top;">
</div>
This is a fine-tuned version of the multi-modal [LayoutLM](https://aka.ms/layoutlm) model for the task of question answering on documents.
## Getting started with the model
To run these examples, you must have [PIL](https://pillow.readthedocs.io/en/stable/installation.html), [pytesseract](https://pypi.org/project/pytesseract/), and [PyTorch](https://pytorch.org/get-started/locally/) installed in addition to [transformers](https://huggingface.co/docs/transformers/index).
```python
from transformers import pipeline
nlp = pipeline(
"document-question-answering",
model="Quantamhash/Quantum_Doc_QA",
)
nlp(
"https://templates.invoicehome.com/invoice-template-us-neat-750px.png",
"What is the invoice number?"
)
# {'score': 0.9943977, 'answer': 'us-001', 'start': 15, 'end': 15}
nlp(
"https://miro.medium.com/max/787/1*iECQRIiOGTmEFLdWkVIH2g.jpeg",
"What is the purchase amount?"
)
# {'score': 0.9912159, 'answer': '$1,000,000,000', 'start': 97, 'end': 97}
nlp(
"https://www.accountingcoach.com/wp-content/uploads/2013/10/[email protected]",
"What are the 2020 net sales?"
)
# {'score': 0.59147286, 'answer': '$ 3,750', 'start': 19, 'end': 20}
```
**NOTE**: This model and pipeline was recently landed in transformers via [PR #18407](https://github.com/huggingface/transformers/pull/18407) and [PR #18414](https://github.com/huggingface/transformers/pull/18414), so you'll need to use a recent version of transformers, for example:
```bash
pip install git+https://github.com/huggingface/transformers.git@2ef774211733f0acf8d3415f9284c49ef219e991
```
## About us
This model was created by the team at [Quantumhash](https://quantumhash.me/).
|