File size: 3,006 Bytes
811e640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a60e6
 
 
 
 
 
 
 
 
213d902
68a60e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213d902
68a60e6
213d902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a60e6
 
 
 
 
 
 
 
 
213d902
68a60e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213d902
68a60e6
213d902
68a60e6
23e4890
68a60e6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---

title: PyTorch Python 3.10 Wheel Collection
library_name: pytorch
license: mit
tags:
- pytorch
- wheels
- python3.10
- cuda
- transformers
- machine-learning
- deep-learning
- dependency-management
language:
- en
pipeline_tag: other
---


# PyTorch Python 3.10 Wheel Collection

Complete PyTorch ML stack with all dependencies - no conflicts, easy installation.

## πŸ“‹ What's Included

- **Python:** 3.10 compatible
- **PyTorch:** 2.7.1 + CUDA 12.6
- **Transformers:** 4.52.3
- **NumPy:** 2.0.2 (compatible version)
- **SciPy:** 1.15.2
- **All Dependencies:** 80+ wheels, fully tested together

## πŸš€ Installation (Super Easy!)

**One command installation from HuggingFace:**

```bash

# Download and install everything

from huggingface_hub import snapshot_download

import subprocess

import os



# Download all wheels

repo_path = snapshot_download(repo_id="RDHub/pytorch_python_310")

wheel_path = os.path.join(repo_path, "lib_wheel")



# Install all wheels

subprocess.run(["pip", "install"] + [f"{wheel_path}/*.whl"], shell=True)

```

**Or manually:**

```bash

# 1. Download repository

git clone https://huggingface.co/RDHub/pytorch_python_310



# 2. Install everything with requirements file for correct versions

cd pytorch_python_310

pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index



# 3. Set up CUDA libraries (for conda environments)

# Create activation script for automatic library path setup

mkdir -p $CONDA_PREFIX/etc/conda/activate.d

cat > $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh << 'EOF'

#!/bin/bash

# Set up NVIDIA CUDA library paths for PyTorch

NVIDIA_LIB_PATH=$(find $CONDA_PREFIX -path "*/nvidia/*/lib" -type d 2>/dev/null | tr '\n' ':')

CUSPARSELT_LIB_PATH=$(find $CONDA_PREFIX -path "*/cusparselt/lib" -type d 2>/dev/null | tr '\n' ':')

export LD_LIBRARY_PATH="${NVIDIA_LIB_PATH}${CUSPARSELT_LIB_PATH}${LD_LIBRARY_PATH}"

EOF

chmod +x $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh



# 4. Reactivate environment and test

conda deactivate && conda activate your_env_name

python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')"

```

## βœ… Key Versions

| Package | Version | Python |
|---------|---------|---------|
| PyTorch | 2.7.1 | 3.10 |
| Transformers | 4.52.3 | 3.10 |
| NumPy | 2.0.2 | 3.10 |
| CUDA | 12.6 | - |

## 🎯 Use Cases

Perfect for:
- Machine Learning projects
- Large Language Model training
- Computer Vision
- Audio processing
- Research environments

## πŸ“ Notes

- **No dependency conflicts** - all versions tested together
- **Offline ready** - no internet needed after download
- **CUDA included** - ready for GPU training with library path setup
- **Linux x86_64** compatible

- **Requires conda environment** - for automatic CUDA library path management



---



**Repository Size:** ~2GB  

**Total Packages:** 80+ wheels  

**Tested:** Ubuntu 22.04, Python 3.10