--- title: PyTorch Python 3.10 Wheel Collection library_name: pytorch license: mit tags: - pytorch - wheels - python3.10 - cuda - transformers - machine-learning - deep-learning - dependency-management language: - en pipeline_tag: other --- # PyTorch Python 3.10 Wheel Collection Complete PyTorch ML stack with all dependencies - no conflicts, easy installation. ## 📋 What's Included - **Python:** 3.10 compatible - **PyTorch:** 2.7.1 + CUDA 12.6 - **Transformers:** 4.52.3 - **NumPy:** 2.0.2 (compatible version) - **SciPy:** 1.15.2 - **All Dependencies:** 80+ wheels, fully tested together ## 🚀 Installation (Super Easy!) **One command installation from HuggingFace:** ```bash # Download and install everything from huggingface_hub import snapshot_download import subprocess import os # Download all wheels repo_path = snapshot_download(repo_id="RDHub/pytorch_python_310") wheel_path = os.path.join(repo_path, "lib_wheel") # Install all wheels subprocess.run(["pip", "install"] + [f"{wheel_path}/*.whl"], shell=True) ``` **Or manually:** ```bash # 1. Download repository git clone https://huggingface.co/RDHub/pytorch_python_310 # 2. Install everything with requirements file for correct versions cd pytorch_python_310 pip install -r lib_wheel/requirements.txt --find-links lib_wheel --no-index # 3. Set up CUDA libraries (for conda environments) # Create activation script for automatic library path setup mkdir -p $CONDA_PREFIX/etc/conda/activate.d cat > $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh << 'EOF' #!/bin/bash # Set up NVIDIA CUDA library paths for PyTorch NVIDIA_LIB_PATH=$(find $CONDA_PREFIX -path "*/nvidia/*/lib" -type d 2>/dev/null | tr '\n' ':') CUSPARSELT_LIB_PATH=$(find $CONDA_PREFIX -path "*/cusparselt/lib" -type d 2>/dev/null | tr '\n' ':') export LD_LIBRARY_PATH="${NVIDIA_LIB_PATH}${CUSPARSELT_LIB_PATH}${LD_LIBRARY_PATH}" EOF chmod +x $CONDA_PREFIX/etc/conda/activate.d/pytorch_cuda_libs.sh # 4. Reactivate environment and test conda deactivate && conda activate your_env_name python -c "import torch; print(f'PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}')" ``` ## ✅ Key Versions | Package | Version | Python | |---------|---------|---------| | PyTorch | 2.7.1 | 3.10 | | Transformers | 4.52.3 | 3.10 | | NumPy | 2.0.2 | 3.10 | | CUDA | 12.6 | - | ## 🎯 Use Cases Perfect for: - Machine Learning projects - Large Language Model training - Computer Vision - Audio processing - Research environments ## 📝 Notes - **No dependency conflicts** - all versions tested together - **Offline ready** - no internet needed after download - **CUDA included** - ready for GPU training with library path setup - **Linux x86_64** compatible - **Requires conda environment** - for automatic CUDA library path management --- **Repository Size:** ~2GB **Total Packages:** 80+ wheels **Tested:** Ubuntu 22.04, Python 3.10