# -*- coding: utf-8 -*- """gradio-implementation.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1sWjE9rMmM4iMx2Gy5880k53D7yaRfDge """ pip install gradio pip install gTTS pip install translate pip install transformers import gradio as gr from transformers import pipeline from gtts import gTTS from translate import Translator # Initialize the text summarization pipeline summarizer = pipeline("summarization") # Define the Gradio interface def summarize_and_translate(article, target_language): # Summarize the input article summary = summarizer(article, max_length=130, min_length=30, do_sample=False)[0]['summary_text'] # Translate the summary to the target language translator = Translator(to_lang=target_language) translated_summary = translator.translate(summary) # Convert the translated summary to speech tts = gTTS(text=translated_summary, lang=target_language) tts.save("speech.mp3") # Return the summarized text and the path to the generated speech return translated_summary, "speech.mp3" # Create a Gradio interface iface = gr.Interface( fn=summarize_and_translate, inputs=["text", "text"], outputs=["text", "audio"], layout="vertical", title="Text Summarization and Translation", description="Summarize text and translate it into another language.", ) # Start the Gradio interface iface.launch()