Transformers
Safetensors
English
finance
Recompense commited on
Commit
2da2967
·
verified ·
1 Parent(s): ccc9ac4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -108
README.md CHANGED
@@ -1,11 +1,19 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
@@ -13,187 +21,170 @@ tags: []
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
61
 
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
 
 
75
 
76
- ## Training Details
 
 
77
 
78
- ### Training Data
 
 
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
  ### Testing Data, Factors & Metrics
 
108
 
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
 
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
 
131
  #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
 
 
 
180
 
181
- [More Information Needed]
182
 
183
  ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - finance
5
+ license: mit
6
+ datasets:
7
+ - Recompense/amazon-appliances-lite-data
8
+ language:
9
+ - en
10
+ base_model:
11
+ - meta-llama/Llama-3.1-8B-Instruct
12
  ---
13
 
14
  # Model Card for Model ID
15
 
16
+ Predicts Prices based on product description.
17
 
18
 
19
 
 
21
 
22
  ### Model Description
23
 
24
+ This model predicts prices of amazon aplliances data based on a product description
25
 
 
26
 
27
+ - **Developed by:** [https://huggingface.co/Recompense]
28
+ - **Model type:** Transformer (causal, autoregressive)
29
+ - **Language(s) (NLP):** English
30
+ - **License:** [MIT]
31
+ - **Finetuned from model:** meta-llama/Llama-3.1-8B-Instruct
 
 
32
 
33
  ### Model Sources [optional]
34
 
35
+ - **Repository:** [https://huggingface.co/Recompense/Midas-pricer/]
 
 
 
 
36
 
37
  ## Uses
38
 
39
+ - Primary use case: Generating estimated retail prices for household appliances from textual descriptions.
 
 
40
 
41
+ - Example applications:
42
 
43
+ Assisting e-commerce teams in setting competitive price points
44
 
45
+ Supporting market analysis dashboards with on-the-fly price estimates
46
 
47
+ - Not intended for: Financial advice or investment decisions
48
 
 
49
 
50
  ### Out-of-Scope Use
51
 
52
+ - Attempting to predict prices outside the appliances domain (e.g., electronics, furniture, vehicles) will likely yield unreliable results.
53
 
54
+ - Using this model for any price-sensitive or regulatory decisions without human oversight is discouraged.
55
 
56
  ## Bias, Risks, and Limitations
57
 
58
+ - Data biases: The training dataset is drawn exclusively from Amazon appliance listings. Price distributions are skewed toward mid-range consumer electronics; extreme low or high‐end appliances are underrepresented.
59
+
60
+ - Input sensitivity: Minor changes in phrasing or additional noisy tokens can shift predictions noticeably.
61
+
62
+ - Generalization: The model does not understand supply chain disruptions, seasonality, or promotions—it only captures patterns seen in historical listing data.
63
 
 
64
 
65
  ### Recommendations
66
 
67
+ - Always validate model outputs against a small set of ground-truth prices before production deployment.
68
 
69
+ - Use this model as an assistant, not an oracle: incorporate downstream business rules or domain expertise.
70
 
71
+ - Regularly retrain or fine-tune on updated listing data to capture shifting market trends.
72
 
73
+ ## How to Get Started with the Model
74
+ ```python
75
+ from transformers import AutoModelForCausalLM, AutoTokenizer
76
+ import torch
77
 
78
+ # Load tokenizer and model
79
+ tokenizer = AutoTokenizer.from_pretrained("Recompense/Midas-pricer")
80
+ model = AutoModelForCausalLM.from_pretrained("Recompense/Midas-pricer", torch_dtype=torch.bfloat16)
81
 
82
+ # Prepare prompt
83
+ product_desc = "How much does this cost to the nearest dollar?\n\nSamsung 7kg top-load washing machine with digital inverter motor"
84
+ prompt = f"{product_desc}\n\nPrice is $"
85
 
86
+ # Tokenize and generate
87
+ inputs = tokenizer(prompt, return_tensors="pt")
88
+ attention_mask = torch.ones(inputs.shape, device="cuda")
89
+ generated = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=3, num_return_sequences=1)
90
+ price_text = tokenizer.decode(generated[0], skip_special_tokens=True)
91
 
92
+ print(f"Estimated price: ${price_text}")
93
+ ```
94
 
 
95
 
96
+ ## Training Details
97
 
98
+ ### Training Data
99
 
100
+ - Dataset: Recompense/amazon-appliances-lite-data
101
 
102
+ - Train/validation/test split: 80/10/10
103
 
104
+ ### Training Procedure
105
 
106
  #### Training Hyperparameters
107
 
108
+ - Fine-tuning framework: PyTorch + Hugging Face Accelerate
109
+
110
+ - Precision: bf16 mixed precision
111
 
112
+ - Batch size: 32 sequences
113
 
114
+ - Learning rate: 1e-5 with linear warmup (10% of total steps)
115
 
116
+ - Optimizer: AdamW
117
 
118
  ## Evaluation
119
 
 
120
 
121
  ### Testing Data, Factors & Metrics
122
+ - Test set: Held-out 10% of listings (≈5 000 examples)
123
 
124
+ - Metric: Root Mean Squared Logarithmic Error (RMSLE)
 
 
 
 
 
 
 
 
125
 
126
+ - Hit@$40: Percentage of predictions within ±$40 of true price
127
 
128
+ | Metric | Value |
129
+ | -------- | ------ |
130
+ | RMSLE | 0.61 |
131
+ | Hit@\$40 | 85.2 % |
132
 
 
 
 
 
 
 
 
133
 
134
  #### Summary
135
+ The model achieves an RMSLE of 0.61, indicating good alignment between predicted and actual prices on a log scale,
136
+ and correctly estimates within $40 in over 85% of test cases.
137
+ This performance is competitive for rapid prototyping in price-sensitive applications.
 
 
 
 
 
138
 
139
  ## Environmental Impact
140
 
141
+ - Approximate compute emissions for fine-tuning (using ML CO₂ impact calculator):
142
 
143
+ - Hardware: Tesla T4
144
 
145
+ - Duration: 2 hours(0.06 epochs)
 
 
 
 
146
 
147
+ - Cloud provider: Google Cloud, region US-Central
148
 
149
+ - Estimated CO₂ emitted: 6 kg CO₂e
150
 
151
+ ## Technical Specifications
152
+ ## Model Architecture
153
+ - Base model: Llama-3.1-8B (8 billion parameters)
154
 
155
+ - Objective: Autoregressive language modeling with instruction tuning
156
 
157
+ ## Compute Infrastructure
158
+ - Hardware: 4× Tesla T4 GPUs
159
 
160
+ - Software:
161
 
162
+ PyTorch 2.x
163
 
164
+ transformers 5.x
165
 
166
+ accelerate 1.x
167
 
168
+ bitsandbytes (for 8-bit quantization optional inference)
 
 
 
 
 
 
169
 
170
+ ## Citation [optional]
171
+ @misc{RCompense2025MidasPricer,
172
+ title = {Midas-Pricer: Price Prediction for Amazon Appliances},
173
+ author = {Recompense},
174
+ year = {2025},
175
+ howpublished = {\url{https://huggingface.co/Recompense/Midas-pricer}},
176
+ }
177
 
 
178
 
179
  ## Glossary [optional]
180
 
181
+ - RMSLE (Root Mean Squared Logarithmic Error):
182
+ Measures the square root of the average squared difference between log-transformed predictions and targets. Less sensitive to large absolute errors.
 
 
 
 
 
183
 
184
+ - Hit@$40:
185
+ Fraction of predictions whose absolute error is ≤ $40.
186
 
 
187
 
188
+ ## Model Card Authors
189
 
190
+ Damola Jimoh(Recompense)