Update README.md
Browse files
README.md
CHANGED
@@ -1,11 +1,19 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
|
10 |
|
11 |
|
@@ -13,187 +21,170 @@ tags: []
|
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:** [
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
75 |
|
76 |
-
|
|
|
|
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
|
|
81 |
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
-
|
|
|
|
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
|
107 |
### Testing Data, Factors & Metrics
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
|
|
|
|
|
|
122 |
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
|
131 |
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
146 |
|
147 |
-
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
154 |
|
155 |
-
|
156 |
|
157 |
-
|
|
|
|
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
|
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
[More Information Needed]
|
182 |
|
183 |
## Glossary [optional]
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
-
## Model Card
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- finance
|
5 |
+
license: mit
|
6 |
+
datasets:
|
7 |
+
- Recompense/amazon-appliances-lite-data
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
base_model:
|
11 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
12 |
---
|
13 |
|
14 |
# Model Card for Model ID
|
15 |
|
16 |
+
Predicts Prices based on product description.
|
17 |
|
18 |
|
19 |
|
|
|
21 |
|
22 |
### Model Description
|
23 |
|
24 |
+
This model predicts prices of amazon aplliances data based on a product description
|
25 |
|
|
|
26 |
|
27 |
+
- **Developed by:** [https://huggingface.co/Recompense]
|
28 |
+
- **Model type:** Transformer (causal, autoregressive)
|
29 |
+
- **Language(s) (NLP):** English
|
30 |
+
- **License:** [MIT]
|
31 |
+
- **Finetuned from model:** meta-llama/Llama-3.1-8B-Instruct
|
|
|
|
|
32 |
|
33 |
### Model Sources [optional]
|
34 |
|
35 |
+
- **Repository:** [https://huggingface.co/Recompense/Midas-pricer/]
|
|
|
|
|
|
|
|
|
36 |
|
37 |
## Uses
|
38 |
|
39 |
+
- Primary use case: Generating estimated retail prices for household appliances from textual descriptions.
|
|
|
|
|
40 |
|
41 |
+
- Example applications:
|
42 |
|
43 |
+
Assisting e-commerce teams in setting competitive price points
|
44 |
|
45 |
+
Supporting market analysis dashboards with on-the-fly price estimates
|
46 |
|
47 |
+
- Not intended for: Financial advice or investment decisions
|
48 |
|
|
|
49 |
|
50 |
### Out-of-Scope Use
|
51 |
|
52 |
+
- Attempting to predict prices outside the appliances domain (e.g., electronics, furniture, vehicles) will likely yield unreliable results.
|
53 |
|
54 |
+
- Using this model for any price-sensitive or regulatory decisions without human oversight is discouraged.
|
55 |
|
56 |
## Bias, Risks, and Limitations
|
57 |
|
58 |
+
- Data biases: The training dataset is drawn exclusively from Amazon appliance listings. Price distributions are skewed toward mid-range consumer electronics; extreme low or high‐end appliances are underrepresented.
|
59 |
+
|
60 |
+
- Input sensitivity: Minor changes in phrasing or additional noisy tokens can shift predictions noticeably.
|
61 |
+
|
62 |
+
- Generalization: The model does not understand supply chain disruptions, seasonality, or promotions—it only captures patterns seen in historical listing data.
|
63 |
|
|
|
64 |
|
65 |
### Recommendations
|
66 |
|
67 |
+
- Always validate model outputs against a small set of ground-truth prices before production deployment.
|
68 |
|
69 |
+
- Use this model as an assistant, not an oracle: incorporate downstream business rules or domain expertise.
|
70 |
|
71 |
+
- Regularly retrain or fine-tune on updated listing data to capture shifting market trends.
|
72 |
|
73 |
+
## How to Get Started with the Model
|
74 |
+
```python
|
75 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
76 |
+
import torch
|
77 |
|
78 |
+
# Load tokenizer and model
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained("Recompense/Midas-pricer")
|
80 |
+
model = AutoModelForCausalLM.from_pretrained("Recompense/Midas-pricer", torch_dtype=torch.bfloat16)
|
81 |
|
82 |
+
# Prepare prompt
|
83 |
+
product_desc = "How much does this cost to the nearest dollar?\n\nSamsung 7kg top-load washing machine with digital inverter motor"
|
84 |
+
prompt = f"{product_desc}\n\nPrice is $"
|
85 |
|
86 |
+
# Tokenize and generate
|
87 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
88 |
+
attention_mask = torch.ones(inputs.shape, device="cuda")
|
89 |
+
generated = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=3, num_return_sequences=1)
|
90 |
+
price_text = tokenizer.decode(generated[0], skip_special_tokens=True)
|
91 |
|
92 |
+
print(f"Estimated price: ${price_text}")
|
93 |
+
```
|
94 |
|
|
|
95 |
|
96 |
+
## Training Details
|
97 |
|
98 |
+
### Training Data
|
99 |
|
100 |
+
- Dataset: Recompense/amazon-appliances-lite-data
|
101 |
|
102 |
+
- Train/validation/test split: 80/10/10
|
103 |
|
104 |
+
### Training Procedure
|
105 |
|
106 |
#### Training Hyperparameters
|
107 |
|
108 |
+
- Fine-tuning framework: PyTorch + Hugging Face Accelerate
|
109 |
+
|
110 |
+
- Precision: bf16 mixed precision
|
111 |
|
112 |
+
- Batch size: 32 sequences
|
113 |
|
114 |
+
- Learning rate: 1e-5 with linear warmup (10% of total steps)
|
115 |
|
116 |
+
- Optimizer: AdamW
|
117 |
|
118 |
## Evaluation
|
119 |
|
|
|
120 |
|
121 |
### Testing Data, Factors & Metrics
|
122 |
+
- Test set: Held-out 10% of listings (≈5 000 examples)
|
123 |
|
124 |
+
- Metric: Root Mean Squared Logarithmic Error (RMSLE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
- Hit@$40: Percentage of predictions within ±$40 of true price
|
127 |
|
128 |
+
| Metric | Value |
|
129 |
+
| -------- | ------ |
|
130 |
+
| RMSLE | 0.61 |
|
131 |
+
| Hit@\$40 | 85.2 % |
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
#### Summary
|
135 |
+
The model achieves an RMSLE of 0.61, indicating good alignment between predicted and actual prices on a log scale,
|
136 |
+
and correctly estimates within $40 in over 85% of test cases.
|
137 |
+
This performance is competitive for rapid prototyping in price-sensitive applications.
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
## Environmental Impact
|
140 |
|
141 |
+
- Approximate compute emissions for fine-tuning (using ML CO₂ impact calculator):
|
142 |
|
143 |
+
- Hardware: Tesla T4
|
144 |
|
145 |
+
- Duration: 2 hours(0.06 epochs)
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
- Cloud provider: Google Cloud, region US-Central
|
148 |
|
149 |
+
- Estimated CO₂ emitted: 6 kg CO₂e
|
150 |
|
151 |
+
## Technical Specifications
|
152 |
+
## Model Architecture
|
153 |
+
- Base model: Llama-3.1-8B (8 billion parameters)
|
154 |
|
155 |
+
- Objective: Autoregressive language modeling with instruction tuning
|
156 |
|
157 |
+
## Compute Infrastructure
|
158 |
+
- Hardware: 4× Tesla T4 GPUs
|
159 |
|
160 |
+
- Software:
|
161 |
|
162 |
+
PyTorch 2.x
|
163 |
|
164 |
+
transformers 5.x
|
165 |
|
166 |
+
accelerate 1.x
|
167 |
|
168 |
+
bitsandbytes (for 8-bit quantization optional inference)
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
## Citation [optional]
|
171 |
+
@misc{RCompense2025MidasPricer,
|
172 |
+
title = {Midas-Pricer: Price Prediction for Amazon Appliances},
|
173 |
+
author = {Recompense},
|
174 |
+
year = {2025},
|
175 |
+
howpublished = {\url{https://huggingface.co/Recompense/Midas-pricer}},
|
176 |
+
}
|
177 |
|
|
|
178 |
|
179 |
## Glossary [optional]
|
180 |
|
181 |
+
- RMSLE (Root Mean Squared Logarithmic Error):
|
182 |
+
Measures the square root of the average squared difference between log-transformed predictions and targets. Less sensitive to large absolute errors.
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
- Hit@$40:
|
185 |
+
Fraction of predictions whose absolute error is ≤ $40.
|
186 |
|
|
|
187 |
|
188 |
+
## Model Card Authors
|
189 |
|
190 |
+
Damola Jimoh(Recompense)
|