--- tags: - moe - fp8 - vllm license: other license_name: deepseek-license base_model: deepseek-ai/DeepSeek-Coder-V2-Base library_name: transformers --- # DeepSeek-Coder-V2-Instruct-0724-FP8 ## Model Overview - **Model Architecture:** DeepSeek-Coder-V2-Instruct-0724 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Release Date:** 3/1/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [DeepSeek-Coder-V2-Instruct-0724](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct-0724). ### Model Optimizations This model was obtained by quantizing weights and activations to FP8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized, except the MLP routers. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 4096, 4 model_name = "neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below with the following command: ```bash python quantize.py --model_path deepseek-ai/DeepSeek-Coder-V2-Instruct-0724 --quant_path "output_dir" --calib_size 128 ``` ```python import argparse from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot from llmcompressor.transformers.compression.helpers import calculate_offload_device_map import torch import os def main(): # Set up command line argument parsing parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8') parser.add_argument('--model_id', type=str, required=True, help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")') parser.add_argument('--save_path', type=str, default='.', help='Custom path to save the quantized model. If not provided, will use model_name-FP8') parser.add_argument('--calib_size', type=int, default=256) args = parser.parse_args() device_map = calculate_offload_device_map( args.model_id, reserve_for_hessians=False, num_gpus=torch.cuda.device_count(), trust_remote_code=True, torch_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( args.model_id, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(args.model_id) NUM_CALIBRATION_SAMPLES = args.calib_size DATASET_ID = "garage-bAInd/Open-Platypus" DATASET_SPLIT = "train" ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def preprocess(example): concat_txt = example["instruction"] + "\n" + example["output"] return {"text": concat_txt} ds = ds.map(preprocess) def tokenize(sample): return tokenizer( sample["text"], padding=False, truncation=False, add_special_tokens=True, ) ds = ds.map(tokenize, remove_columns=ds.column_names) # Configure the quantization algorithm and scheme recipe = QuantizationModifier( targets="Linear", scheme="FP8", ignore=["lm_head", "re:.*\.mlp\.gate$"] ) # Apply quantization oneshot( model=model, dataset=ds, recipe=recipe, num_calibration_samples=args.calib_size ) save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8") os.makedirs(save_path, exist_ok=True) # Save to disk in compressed-tensors format model.save_pretrained(save_path, save_compressed=True, skip_compression_stats=True) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") if __name__ == "__main__": main() ``` ## Evaluation The model was evaluated on [HumanEval and HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval+](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following commands: ``` python evalplus/codegen/generate.py --model neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8 --bs 16 --temperature 0.2 --n_samples 50 --root "./results" --dataset humaneval --backend vllm --dtype auto --tp 8 python evalplus/evalplus/sanitize.py results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-FP8_vllm_temp_0.2 evalplus.evaluate --dataset humaneval --samples results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-FP8_vllm_temp_0.2-sanitized ``` ### Accuracy #### HumanEval evaluation scores | Metric | deepseek-ai/DeepSeek-Coder-V2-Instruct-0724 | neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8 | |------------------------|:---------------------------------:|:-------------------------------------------:| | HumanEval pass@1 | 89.3 | 88.7 | | HumanEval pass@10 | 93.1 | 92.9 | | HumanEval+ pass@1 | 82.9 | 82.8 | | HumanEval+ pass@10 | 87.6 | 86.9 | | **Average Score** | **88.23** | **87.83** | | **Recovery** | **100.00** | **99.55** |