Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct/blob/main/LICENSE
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
library_name: transformers
|
8 |
+
tags:
|
9 |
+
- code
|
10 |
+
- codeqwen
|
11 |
+
- chat
|
12 |
+
- qwen
|
13 |
+
- qwen-coder
|
14 |
+
- fp8
|
15 |
+
- llm-compressor
|
16 |
+
- compressed-tensors
|
17 |
+
- vllm
|
18 |
+
base_model:
|
19 |
+
- Qwen/Qwen2.5-Coder-14B-Instruct
|
20 |
+
---
|
21 |
+
## Model Overview
|
22 |
+
- **Model Architecture:** Qwen2ForCausalLM
|
23 |
+
- **Input:** Text
|
24 |
+
- **Output:** Text
|
25 |
+
- **Model Optimizations:**
|
26 |
+
- **Weight quantization:** FP8
|
27 |
+
- **Activation quantization:** FP8
|
28 |
+
- **Release Date:** 11/28/2024
|
29 |
+
- **Version:** 1.0
|
30 |
+
- **Model Developers:** Red Hat
|
31 |
+
|
32 |
+
Quantized version of [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct).
|
33 |
+
|
34 |
+
### Model Optimizations
|
35 |
+
|
36 |
+
This model was obtained by quantizing the weights and activations of [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) to FP8 data type.
|
37 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
38 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized.
|
39 |
+
|
40 |
+
## Deployment
|
41 |
+
|
42 |
+
### Use with vLLM
|
43 |
+
|
44 |
+
1. Initialize vLLM server:
|
45 |
+
```
|
46 |
+
vllm serve RedHatAI/Qwen2.5-Coder-14B-Instruct-FP8-dynamic
|
47 |
+
```
|
48 |
+
|
49 |
+
2. Send requests to the server:
|
50 |
+
|
51 |
+
```python
|
52 |
+
from openai import OpenAI
|
53 |
+
|
54 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
55 |
+
openai_api_key = "EMPTY"
|
56 |
+
openai_api_base = "http://<your-server-host>:8000/v1"
|
57 |
+
|
58 |
+
client = OpenAI(
|
59 |
+
api_key=openai_api_key,
|
60 |
+
base_url=openai_api_base,
|
61 |
+
)
|
62 |
+
|
63 |
+
model = "RedHatAI/Qwen2.5-Coder-14B-Instruct-FP8-dynamic"
|
64 |
+
|
65 |
+
messages = [
|
66 |
+
[{"role": "user", "content": "Write a quick sort algorithm."}],
|
67 |
+
]
|
68 |
+
|
69 |
+
outputs = client.chat.completions.create(
|
70 |
+
model=model,
|
71 |
+
messages=messages,
|
72 |
+
)
|
73 |
+
|
74 |
+
generated_text = outputs.choices[0].message.content
|
75 |
+
print(generated_text)
|
76 |
+
```
|
77 |
+
|
78 |
+
## Creation
|
79 |
+
|
80 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
81 |
+
|
82 |
+
<details>
|
83 |
+
<summary>Model Creation Code</summary>
|
84 |
+
|
85 |
+
```python
|
86 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
87 |
+
from llmcompressor.transformers import oneshot
|
88 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
89 |
+
|
90 |
+
# Load model
|
91 |
+
model_stub = "Qwen/Qwen2.5-Coder-14B-Instruct"
|
92 |
+
model_name = model_stub.split("/")[-1]
|
93 |
+
|
94 |
+
model = AutoModelForCausalLM.from_pretrained(model_stub, dtype="auto")
|
95 |
+
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
97 |
+
|
98 |
+
# Configure the quantization algorithm and scheme
|
99 |
+
recipe = QuantizationModifier(
|
100 |
+
ignore=["lm_head"],
|
101 |
+
targets="Linear",
|
102 |
+
scheme="FP8_dynamic",
|
103 |
+
)
|
104 |
+
|
105 |
+
# Apply quantization
|
106 |
+
oneshot(
|
107 |
+
model=model,
|
108 |
+
recipe=recipe,
|
109 |
+
)
|
110 |
+
|
111 |
+
# Save to disk in compressed-tensors format
|
112 |
+
save_path = model_name + "-FP8-dynamic"
|
113 |
+
model.save_pretrained(save_path)
|
114 |
+
tokenizer.save_pretrained(save_path)
|
115 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
116 |
+
```
|
117 |
+
</details>
|
118 |
+
|