Qwen3-30B-A3B-quantized.w4a16
Model Overview
- Model Architecture: Qwen3ForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: INT4
- Intended Use Cases:
- Reasoning.
- Function calling.
- Subject matter experts via fine-tuning.
- Multilingual instruction following.
- Translation.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- Release Date: 05/05/2025
- Version: 1.0
- Model Developers: RedHat (Neural Magic)
Model Optimizations
This model was obtained by quantizing the weights of Qwen3-30B-A3B to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-group scheme, with group size 128. The GPTQ algorithm is applied for quantization, as implemented in the llm-compressor library.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-30B-A3B-quantized.w4a16"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)
messages = [
{"role": "user", "content": prompt}
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
Creation details
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model
model_stub = "Qwen/Qwen3-30B-A3B"
model_name = model_stub.split("/")[-1]
num_samples = 1024
max_seq_len = 8192
model = AutoModelForCausalLM.from_pretrained(model_stub)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.map(preprocess_fn)
# Configure the quantization algorithm and scheme
recipe = GPTQModifier(
ignore: ["lm_head", "re:.*gate$"]
sequential_targets=["Qwen3DecoderLayer"],
targets="Linear",
scheme="W4A16",
dampening_frac=0.01,
)
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w4a16"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using lm-evaluation-harness, and on reasoning tasks using lighteval. vLLM was used for all evaluations.
Evaluation details
lm-evaluation-harness
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks openllm \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks mgsm \
--apply_chat_template\
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks leaderboard \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
lighteval
lighteval_model_arguments.yaml
model_parameters:
model_name: RedHatAI/Qwen3-30B-A3B-quantized.w4a16
dtype: auto
gpu_memory_utilization: 0.9
max_model_length: 40960
generation_parameters:
temperature: 0.6
top_k: 20
min_p: 0.0
top_p: 0.95
max_new_tokens: 32768
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime24|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime25|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|math_500|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|gpqa:diamond|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks extended|lcb:codegeneration \
--use_chat_template = true
Accuracy
Category | Benchmark | Qwen3-30B-A3B | Qwen3-30B-A3B-quantized.w4a16 (this model) |
Recovery |
---|---|---|---|---|
OpenLLM v1 | MMLU (5-shot) | 77.67 | 76.11 | 98.00% |
ARC Challenge (25-shot) | 63.40 | 62.97 | 99.3% | |
GSM-8K (5-shot, strict-match) | 87.26 | 86.66 | 99.3% | |
Hellaswag (10-shot) | 54.33 | 54.76 | 100.8% | |
Winogrande (5-shot) | 66.77 | 64.33 | 96.3% | |
TruthfulQA (0-shot, mc2) | 56.27 | 54.76 | 97.3% | |
Average | 67.62 | 66.60 | 98.5% | |
OpenLLM v2 | MMLU-Pro (5-shot) | 47.45 | 45.38 | 95.6% |
IFEval (0-shot) | 86.26 | 84.86 | 98.4% | |
BBH (3-shot) | 34.81 | 28.12 | 80.8% | |
Math-lvl-5 (4-shot) | 52.14 | 56.99 | 109.3% | |
GPQA (0-shot) | 0.31 | 0.60 | --- | |
MuSR (0-shot) | 8.09 | 9.05 | --- | |
Average | 38.18 | 37.50 | 98.2% | |
Multilingual | MGSM (0-shot) | 32.27 | 33,890 | 104.8% |
Reasoning (generation) |
AIME 2024 | 78.33 | 78.54 | 100.3% |
AIME 2025 | 71.46 | 70.31 | 98.4% | |
GPQA diamond | 62.63 | 62.12 | 99.2% | |
Math-lvl-5 | 97.60 | 97.20 | 99.6% | |
LiveCodeBench | 60.66 | 58.75 | 96.9% |
- Downloads last month
- 96