Qwen3-4B-quantized.w4a16

Model Overview

  • Model Architecture: Qwen3ForCausalLM
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: INT4
  • Intended Use Cases:
    • Reasoning.
    • Function calling.
    • Subject matter experts via fine-tuning.
    • Multilingual instruction following.
    • Translation.
  • Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws).
  • Release Date: 05/05/2025
  • Version: 1.0
  • Model Developers: RedHat (Neural Magic)

Model Optimizations

This model was obtained by quantizing the weights of Qwen3-4B to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.

Only the weights of the linear operators within transformers blocks are quantized. Weights are quantized using a asymmetric per-group scheme, with group size 64. The GPTQ algorithm is applied for quantization, as implemented in the llm-compressor library.

Deployment

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Qwen3-4B-quantized.w4a16"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)

messages = [
    {"role": "user", "content": prompt}
]

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.

Creation

Creation details This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer
  
# Load model
model_stub = "Qwen/Qwen3-4B"
model_name = model_stub.split("/")[-1]

num_samples = 1024
max_seq_len = 8192

model = AutoModelForCausalLM.from_pretrained(model_stub)

tokenizer = AutoTokenizer.from_pretrained(model_stub)

def preprocess_fn(example):
    return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
  
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.map(preprocess_fn)

# Configure the quantization algorithm and scheme
recipe = GPTQModifier(
    ignore=["lm_head"],
    sequential_targets=["Qwen3DecoderLayer"],
    targets="Linear",
    dampening_frac=0.01,
    scheme="W4A16",
  )

  # Apply quantization
  oneshot(
      model=model,
      dataset=ds, 
      recipe=recipe,
      max_seq_length=max_seq_len,
      num_calibration_samples=num_samples,
  )
  
  # Save to disk in compressed-tensors format
  save_path = model_name + "-quantized.w4a16"
  model.save_pretrained(save_path)
  tokenizer.save_pretrained(save_path)
  print(f"Model and tokenizer saved to: {save_path}")

Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using lm-evaluation-harness, and on reasoning tasks using lighteval. vLLM was used for all evaluations.

Evaluation details

lm-evaluation-harness

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-4B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
  --tasks openllm \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-4B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
  --tasks mgsm \
  --apply_chat_template\
  --batch_size auto
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-4B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \
  --tasks leaderboard \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto

lighteval

lighteval_model_arguments.yaml

model_parameters:
  model_name: RedHatAI/Qwen3-4B-quantized.w4a16
  dtype: auto
  gpu_memory_utilization: 0.9
  max_model_length: 40960
  generation_parameters:
    temperature: 0.6
    top_k: 20
    min_p: 0.0
    top_p: 0.95
    max_new_tokens: 32768
lighteval vllm \
  --model_args lighteval_model_arguments.yaml \
  --tasks lighteval|aime24|0|0 \
  --use_chat_template = true
lighteval vllm \
  --model_args lighteval_model_arguments.yaml \
  --tasks lighteval|aime25|0|0 \
  --use_chat_template = true
lighteval vllm \
  --model_args lighteval_model_arguments.yaml \
  --tasks lighteval|math_500|0|0 \
  --use_chat_template = true
lighteval vllm \
  --model_args lighteval_model_arguments.yaml \
  --tasks lighteval|gpqa:diamond|0|0 \
  --use_chat_template = true
lighteval vllm \
  --model_args lighteval_model_arguments.yaml \
  --tasks extended|lcb:codegeneration \
  --use_chat_template = true

Accuracy

Category Benchmark Qwen3-4B Qwen3-4B-quantized.w4a16
(this model)
Recovery
OpenLLM v1 MMLU (5-shot) 66.76 65.01 97.38%
ARC Challenge (25-shot) 50.17 51.19 102.0%
GSM-8K (5-shot, strict-match) 60.80 61.18 100.6%
Hellaswag (10-shot) 52.80 53.01 100.4%
Winogrande (5-shot) 58.41 62.27 106.6%
TruthfulQA (0-shot, mc2) 51.79 53.09 102.5%
Average 56.79 57.63 101.5%
OpenLLM v2 MMLU-Pro (5-shot) 29.82 26.25 88.0%
IFEval (0-shot) 82.90 81.45 99.2%
BBH (3-shot) 29.69 25.11 84.6%
Math-lvl-5 (4-shot) 50.63 48.66 96.1%
GPQA (0-shot) 0.00 0.00 ---
MuSR (0-shot) 11.37 13.92 ---
Average 33.93 32.57 96.0%
Multilingual MGSM (0-shot) 26.67 25.63 96.1%
Reasoning
(generation)
AIME 2024 71.35 63.85 89.5%
AIME 2025 59.98 57.71 96.9%
GPQA diamond 55.56 53.54 96.4%
Math-lvl-5 95.60 94.60 99.0%
LiveCodeBench 53.03 49.51 93.4%
Downloads last month
37
Safetensors
Model size
1.26B params
Tensor type
I64
·
I32
·
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RedHatAI/Qwen3-4B-quantized.w4a16

Base model

Qwen/Qwen3-4B-Base
Finetuned
Qwen/Qwen3-4B
Quantized
(70)
this model

Collection including RedHatAI/Qwen3-4B-quantized.w4a16