File size: 11,672 Bytes
36b167c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a10a8a0
 
 
 
 
 
 
 
36b167c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc766ec
36b167c
 
 
 
c749591
36b167c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fac70ad
 
 
 
 
36b167c
 
 
fac70ad
36b167c
 
 
 
 
 
 
a10a8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460134
 
 
 
 
 
 
 
 
71c2c3f
1460134
27f4658
1460134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71c2c3f
1460134
 
 
01b60c4
1460134
 
 
 
 
 
 
 
 
 
 
 
 
f9dc08d
1460134
 
 
 
 
 
 
36b167c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
---
license: mit
license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: microsoft/phi-4
tags:
- phi
- nlp
- math
- code
- chat
- conversational
- neuralmagic
- redhat
- llmcompressor
- quantized
- int4
---

<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
  phi-4-quantized.w4a16
  <img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
</h1>
  
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
</a>

## Model Overview
- **Model Architecture:** Phi3ForCausalLM
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** INT4
- **Intended Use Cases:** This model is designed to accelerate research on language models, for use as a building block for generative AI powered features. It provides uses for general purpose AI systems and applications (primarily in English) which require:
  1. Memory/compute constrained environments.
  2. Latency bound scenarios.
  3. Reasoning and logic.
- **Out-of-scope:** This model is not specifically designed or evaluated for all downstream purposes, thus:
  1. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.
  2. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case, including the model’s focus on English.
  3. Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.
- **Release Date:** 03/03/2025
- **Version:** 1.0
- **Model Developers:** Red Hat (Neural Magic)


### Model Optimizations

This model was obtained by quantizing the weights of [phi-4](https://huggingface.co/microsoft/phi-4) to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.

Only the weights of the linear operators within transformers blocks are quantized.
Weights are quantized using a symmetric per-group scheme, with group size 128.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.


## Deployment

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "neuralmagic-ent/phi-4-quantized.w4a16"
number_gpus = 1

sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "user", "content": "Give me a short introduction to large language model."},
]

prompts = tokenizer.apply_chat_template(messages, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

<details>
  <summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
  
```bash
$ podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
 --ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768  \
--enforce-eager --model RedHatAI/phi-4-quantized.w4a16
```
​​See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
</details>

<details>
  <summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary>
  
```bash
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/phi-4-quantized-w4a16:1.5
```

```bash
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/phi-4-quantized-w4a16
  
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/phi-4-quantized-w4a16
```
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
</details>

<details>
  <summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
  
```python
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
 name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
 annotations:
   openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
   opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
 labels:
   opendatahub.io/dashboard: 'true'
spec:
 annotations:
   prometheus.io/port: '8080'
   prometheus.io/path: '/metrics'
 multiModel: false
 supportedModelFormats:
   - autoSelect: true
     name: vLLM
 containers:
   - name: kserve-container
     image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
     command:
       - python
       - -m
       - vllm.entrypoints.openai.api_server
     args:
       - "--port=8080"
       - "--model=/mnt/models"
       - "--served-model-name={{.Name}}"
     env:
       - name: HF_HOME
         value: /tmp/hf_home
     ports:
       - containerPort: 8080
         protocol: TCP
```

```python
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  annotations:
    openshift.io/display-name: phi-4-quantized.w4a16 # OPTIONAL CHANGE
    serving.kserve.io/deploymentMode: RawDeployment
  name: phi-4-quantized.w4a16         # specify model name. This value will be used to invoke the model in the payload
  labels:
    opendatahub.io/dashboard: 'true'
spec:
  predictor:
    maxReplicas: 1
    minReplicas: 1
    model:
      modelFormat:
        name: vLLM
      name: ''
      resources:
        limits:
          cpu: '2'			# this is model specific
          memory: 8Gi		# this is model specific
          nvidia.com/gpu: '1'	# this is accelerator specific
        requests:			# same comment for this block
          cpu: '1'
          memory: 4Gi
          nvidia.com/gpu: '1'
      runtime: vllm-cuda-runtime	# must match the ServingRuntime name above
      storageUri: oci://registry.redhat.io/rhelai1/modelcar-phi-4-quantized-w4a16:1.5
    tolerations:
    - effect: NoSchedule
      key: nvidia.com/gpu
      operator: Exists
```

```bash
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
```

```python
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
        -H "Content-Type: application/json" \
        -d '{
    "model": "phi-4-quantized.w4a16",
    "stream": true,
    "stream_options": {
        "include_usage": true
    },
    "max_tokens": 1,
    "messages": [
        {
            "role": "user",
            "content": "How can a bee fly when its wings are so small?"
        }
    ]
}'
```

See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
</details>


## Creation

<details>
  <summary>Creation details</summary>
  This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. 


  ```python
  from transformers import AutoModelForCausalLM, AutoTokenizer
  from llmcompressor.modifiers.quantization import GPTQModifier
  from llmcompressor.transformers import oneshot
  from datasets import load_dataset
  
  # Load model
  model_stub = "microsoft/phi-4"
  model_name = model_stub.split("/")[-1]
  
  num_samples = 1024
  max_seq_len = 8192
  
  tokenizer = AutoTokenizer.from_pretrained(model_stub)
  
  model = AutoModelForCausalLM.from_pretrained(
      model_stub,
      device_map="auto",
      torch_dtype="auto",
  )
  
  def preprocess_fn(example):
    return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
  
  ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
  ds = ds.map(preprocess_fn)
  
  # Configure the quantization algorithm and scheme
  recipe = GPTQModifier(
      targets="Linear",
      scheme="W4A16",
      ignore=["lm_head"],
      sequential_targets=["Phi3DecoderLayer"],
      dampening_frac=0.01,
  )
  
  # Apply quantization
  oneshot(
      model=model,
      dataset=ds, 
      recipe=recipe,
      max_seq_length=max_seq_len,
      num_calibration_samples=num_samples,
  )
  
  # Save to disk in compressed-tensors format
  save_path = model_name + "-quantized.w4a16"
  model.save_pretrained(save_path)
  tokenizer.save_pretrained(save_path)
  print(f"Model and tokenizer saved to: {save_path}")
  ```
</details>
 


## Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/phi-4-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.6,max_model_len=4096,enable_chunk_prefill=True,tensor_parallel_size=1 \
  --tasks openllm \
  --batch_size auto
```

### Accuracy

#### Open LLM Leaderboard evaluation scores
<table>
  <tr>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>phi-4</strong>
   </td>
   <td><strong>phi-4-quantized.w4a16<br>(this model)</strong>
   </td>
   <td><strong>Recovery</strong>
   </td>
  </tr>
  <tr>
   <td>MMLU (5-shot)
   </td>
   <td>80.30
   </td>
   <td>79.87
   </td>
   <td>99.5%
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (25-shot)
   </td>
   <td>64.42
   </td>
   <td>62.88
   </td>
   <td>97.6%
   </td>
  </tr>
  <tr>
   <td>GSM-8K (5-shot, strict-match)
   </td>
   <td>90.07
   </td>
   <td>89.69
   </td>
   <td>99.6%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td>
   <td>84.37
   </td>
   <td>83.42
   </td>
   <td>98.9%
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>80.58
   </td>
   <td>80.74
   </td>
   <td>100.2%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot, mc2)
   </td>
   <td>59.37
   </td>
   <td>59.18
   </td>
   <td>99.7%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>76.52</strong>
   </td>
   <td><strong>75.96</strong>
   </td>
   <td><strong>99.3%</strong>
   </td>
  </tr>
</table>